Non-Profit Org.
U.S.
POSTAGE
PAID
SOCIETY OF
PLASTICS
ENGINEERS, INC

Our mission is to facilitate the advancement of thermoforming technologies through education, application, promotion and research.

Executive Committee
2004 - 2006

CHAIR
Roger Kipp
McClarin Plastics
P.O. Box 486, 600 Linden Avenue
Hanover, PA 17331
(717) 657-2240 • FAX (717) 657-1728
rkipp@mcclarinplastics.com

CHAIR ELECT
Walt Walker
Prent Corporation
P. O. Box 471, 225 Kennedy Road
Janesville, WI 53547-0471
(608) 754-0276 • FAX (608) 754-2410
wwalker@prent.com

TREASURER
Barry Shepherd
Shepherd Thermoforming & Pkging, Inc.
P.O. Box 471
Brampton, Ontario L6W 1T5 CANADA
(905) 459-4545 Ext. 229 • FAX (905) 459-6746
barry@shepherd.ca

SECRETARY
Roger Fox
The Foxmor Group, Inc.
373 South County Farm Road, Suite 202
Wheaton, IL 60187
(630) 653-2200 • FAX (630) 653-1474
rfox@foxmor.com

COUNCILOR WITH TERM ENDING ANTEC 2006
Stephen D. Hasselbach
CMI Plastics
P.O. Box 369
Cranbury, NJ 08512
(609) 395-1920 • FAX (609) 395-0981
steve@cmiplastics.com

PRIOR CHAIR
Joe Peters
Universal Plastics
75 Whiting Farms Road
Holyoke, MA 01040
(413) 592-4791 • FAX (413) 592-6876
petersj@universalplastics.com

Website: http://www.4spe.org/communities/divisions/d25.php
or www.thermoformingdivision.com

The success of this conference is attributable in a large part to the generosity of our 2005 Conference Sponsors.

“AUTOMOTIVE PLASTIC FUEL TANK SYSTEMS”
BY K. W. ALBAUGH, BIELOMATIK – see page 11

Web site: www.thermoformingdivision.com
path of knowledge sharing that will open opportuni- ties for all participants.

- The Society of Plastics Engineers has announced an alliance with the American Management Association (AMA). As an SPE Member, we will receive significant savings and invaluable educational resources. The AMA can support workforce development through practical business training seminars, conferences, and online information. It is up to each of us to make use of this valuable asset.

- The Thermoforming Division has an alliance with the Decorating and Assembly Divisions involving conference participation. Please plan to attend and support these workshops at our Milwaukee Conference.

- A plan for developing an alliance with other Divisions is in place with “Exactly What is Thermoforming” DVD providing an introduction. “It’s About Plastics,” an expansion of multi process knowledge and understanding can only strengthen the plastics industry and our individual growth.

- The alliance with the European Thermoeforming Division is growing with plans for mutually beneficial programs and program support currently in the planning stage between your Chairman and Ken Braney, Chairman of the European Division. It is my hope that our alliance will provide new thoughts and energy for business and personal growth to our members and members’ companies.

Please provide your thoughts on the strategy of alliances.

Sincerely,

Roger C. Kipp, Chairman

James A. Alongi - 2008
MAAC Machinery
596 Tower Boulevard
Carol Stream, IL 60118-0426
FAX (630) 465-7799
jalongi@maacmachinery.com

Machinery Committee

Ken Gripp - 2008
Portage Casting & Mold, Inc.
2001 Portage Road
Portage, WI 53091
TEL (608) 742-1173
FAX (608) 742-2159
ken@mcvi.com

Materials Committee

Donald C. Hylton - 2007
640 Holyfield Highway
Fairburn, GA 30213
TEL (770) 772-5008
dum@thermoforming.com

Materials Committee

Bill Kent - 2008
Brown Machine
500 North Rose Street
Beaverton, OR 97002-0434
TEL (503) 435-7174
FAX (503) 435-2821
bill.kent@brown-machine.com

Machinery Committee

Ken Braney, Chairman, European Thermoeforming Division, and Roger Kipp, Chairman, Thermoeforming Division in U.S., growing PARTNERSHIP.

Ken Braney, Chairman, European Thermoeforming Division, and Roger Kipp, Chairman, Thermoeforming Division in U.S., growing PARTNERSHIP.

BY ROGER KIPP, CHAIR

STRATEGY ... POSITIONING FOR SUCCESS

The Thermoeforming Division, like all successful business organizations, needs to operate with long-range goals and objectives. The goals and objectives provide the basis for our strategy and planning. Our Executive Committee has provided this long-range planning to our National Society as part of the 2003 Pride Compli- ance Report, submitted in February.

Long-term we see the need to continue to develop and refine strategic planning that provides continuity, consistency and a cohesive vision within our Board and from our Board. This was vital as each Chairman has only had two years (six Board meetings) at the helm. In order to continue to meet the mission of facilitating the advancement of Thermoeforming Technology through education, application, promotion and research this strategy is imperative. The primary goals supporting this challenge are:

1) We must maintain sufficient resources to meet the obligations we have committed to. This will involve growing and maintaining membership and membership stability.

2) Provide continuing maintenance of operating pro- cedures to assure consistency within our efforts.

3) Provide ongoing evaluation of the succession within the Executive Committee in order to assure con- tinuity.

4) Maintain an open forum for new ideas. Encourage and promote fresh participation to assure cohesion. This is a goal that will need the involve- ment of all of our plastics’ associates.

The short-term goals developed through committee communication and achieved through committee work position us for successful completion of our long-term goals. Please note the roster of Board Members on the inside of the last page of the Thermoeforming Quarterly. We have added the Board Member committee affiliation of each Board Member. We invite you to communicate with the Board your ideas for achieving our missions.

The assimilation of new ideas and participation needs to be generated from outside our Board activity.

Alliance – The need for creative thinking and energy.

Our Industry, Society, Division and Members need to look outside for added development input. The Thermoeforming Division and Society have initiated formal alliances with “competing” organizations to set a

Chairman’s Corner
Contents

TECHNICAL SECTION

Lead Technical Article:
Automotive Plastic Fuel Tank Systems ... 11

Industry Practice:
Design Features of a Multi-Cavity Mold Used for High-Cyclic Thermoforming . 15

Industry Practice:
Thermoforming: Growth & Evolution, Part II .. 19

News Release:
Irwin Research and Wonderpack’s Joint Venture ... 23

Thermoforming 101:
Comparing Concept to Reality .. 24

Book Review:
Understanding Plastics Testing .. 27

University Spotlight:
Millersville University .. 28

DIVISION ACTIVITIES

Chairman’s Corner ... Inside Front Cover
Membership Memo: Membership is an HONOR! .. 2
New Members .. 3
2005 Thermoformer of the Year .. 4
Thermoformer of the Year 2006 Nomination Form .. 7
Spring 2005 Board Meeting Schedule ... 8
Council Report .. 30
Membership Application ... 37
Index of Sponsors ... 40
Board of Directors List ... Inside Back Cover

These sponsors enable us to publish Thermoforming Quarterly

Radiant Efficiency = Energy Savings

You can't have one without the other!
Solar Products can offer you maximum energy savings along with:
Lower cycle rates • Lower reject rates
Greater heater life • Greater oven uniformity
Don't be fooled by claims of outrageous energy savings. Ask your heater supplier to provide documented proof of radiant efficiency.

Ask for Solar Products on your next new machine purchase or for that old machine retrofit.

Tel (973) 248-9370
Fax (973) 835-7856
www.solarproducts.com

A NOTE TO PROSPECTIVE AUTHORS

TFQ is an “equal opportunity” publisher! You will note that we have several categories of technical articles, ranging from the super-high tech (sometimes with equations!), to industry practice articles, to book reviews, how to articles, tutorial articles, and so on. Got an article that doesn’t seem to fit in these categories? Send it to Jim Throne, Technical Editor, anyway. He’ll fit it in! He promises. [By the way, if you are submitting an article, Jim would appreciate it on CD-ROM in DOC format. All graphs and photos should be black and white and of sufficient size and contrast to be scannable. Thanks.]

Thermoforming Quarterly® is published four times annually as an informational and educational bulletin to the members of the Society of Plastics Engineers, Thermoforming Division, and the thermoforming industry. The name, “Thermoforming Quarterly®” and its logotype, are registered trademarks of the Society of Plastics Engineers, Inc. No part of this publication may be reproduced in any form or by any means without prior written permission of the publisher, copyright holder. Opinions of the authors are their own, and the publishers cannot be held responsible for opinions or representations of any unsolicited material. Printed in the U.S.A.

Thermoforming Quarterly® is registered in the US Patent and Trademark Office (Registration no. 2,229,747).

228 Wanaque Ave., Pompton Lake, NJ 07442
Tel (973) 248-9370
Fax (973) 835-7856
www.solarproducts.com
Membership is an HONOR!

BY MIKE SIROTNAK, MEMBERSHIP CHAIRMAN

By now, all of you have received the DVD “What Exactly is Thermoforming?” By now, some of you may have even watched it. I urge each and every one of you to watch this outstanding, short synopsis of our industry. Due to its enormous popularity, we just ordered its second printing. Additional copies can be requested from any Board member. The DVD is available by downloading it from our web site, www.thermoformingdivision.com. We have received requests for additional copies from material manufacturers, processors, professors and even recruiters. We encourage you to spread the news. Your feedback is always welcome.

Our division continues to be the trendsetter of the Society of Plastic Engineers. The focus of the division continues to be educating our industry through scholarships, matching grants for technical equipment, DVD’s, Thermoforming Quarterly, technical conferences, trade shows to name a few. We are a division of action not just talk. And that is something to be proud of. I urge each and every one of you to actively recruit new members. My goal is to have our membership numbers challenge those of the more high profile industries. We offer so much more than the other divisions; we should have better membership numbers.

Now is the time to start planning for Milwaukee. This year’s technical program and trade show should be very interesting. Bob Porsche and Gwen Mathis have put together a first-rate conference. The technical program is focusing on recent advancements in our industry. Walt Walker and Ed Probst are doing an outstanding job. Please remember to support the Parts Competition; it takes a lot of effort to set up and coordinate and the awards look awesome in your lobby. Joe Peters will be handling the competition for the first time, so there is even more reason to be concerned. As always, please support the exhibit floor. We cannot have a conference like we do without all those great, loyal exhibitors.

I look forward to seeing all of you in Milwaukee and appreciate all of your support.

God Bless America!

MEMBERSHIP REPORT
as of 3/1/05

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Paid</td>
<td>1,230</td>
</tr>
<tr>
<td>Secondary Paid</td>
<td>449</td>
</tr>
<tr>
<td>Total Membership</td>
<td>1,679</td>
</tr>
<tr>
<td>Goal as of 6/30/2005</td>
<td>2,000</td>
</tr>
</tbody>
</table>
To Our New Members

Shawn Aldana
General Plastics
Milwaukee, WI

Adam W. Barton
Cincinnati, OH

Kelly Bennett
Southern Plastics
New Bern, NC

Brian A. Bentley
Livonia, MI

Adam Bishop
Spray Control Systems
Blooming Prairie, MN

David A. Branscomb
John Deere Co.
Molina, IL

Hector C. Cabezas
Moverol CA
Valencia, Venezuela

Brian T. Carvill
Pactiv Corp.
Lake Forest, IL

Lam Chuan Lim
Parade Mfg/ Federal Terrioto, Malaysia

Alfonso Diez-Gutierrez
Tapones Y Articulos De Distribution
Jiutepec, Morelos Mexico

Joan Dorsey
Don’s Specialties
Goodlettsville, TN

Daniel Drzik
Walton Plastics
Walton Hills, OH

Kenneth H. Franklin
Packaging Machinery Services
Cleveland, OH

Cress Hanenkrat
Poly Hi Solidur
Fort Wayne, IN

Robert D. Hirsch
Solvay Advanced Polymers
Alpharetta, GA

Sarah J. Holthaus
Trompeauleau
Greenville, AL

James Hunnicutt
CorStone Industries
Greenville, AL

Kenny Jensen
Spray Control Systems
Blooming Prairie, MN

Andre K. Johnson
Sicklerville, NJ

John R. Kennedy
Jaco Plastics
Plainfield, NJ

Daniel P. Ketchpel
Industrial Forming
Goleta, CA

Scott Koetje
Solo Cup Corp.
Wheeling, IL

Dick Kruckegerg
Spray Control Systems
Blooming Prairie, MN

Babu Kuruvilla
Duni Corp.
Thomaston, GA

Chuck Marion
Velux-Greenwood, Inc.
Greenwood, SC

Donald C. McCarthy
Georgia Pacific Corp.
Neenah, WI

Doug McGinnis
Howell Packaging
Elmira, NY

Tricia Mc Knight
Society of Plastics Engineers
Brookfield, CT

Jim Meyer
Flaxpak Corp.
Phoenix, AZ

Bill J. Moore
Alltrista Industrial Plastics
Fort Smith, AK

Mark Nothnagel
Visy Industrial Packaging
Melbourne, Victoria Australia

John D. O’Keefe
Walpole, MA

Dhavel N. Parikh
GE Plastics
Mt. Vernon, IN

Randy Paul
Plastics Ingenuity
Cross Plains, WI

Carlos Pineda
Flexpak Corp.
Phoenix, AZ

Dean Poelman
PSI
Olive Branch, MS

Ron Read
Plastics Unlimited
Preston, IO

Gary J. Rief
Fox Valley Tool & Die
Kaukauna, WI

Jaime Eduardo Salinas
Nikolau Alayon
Brazli

Matt M. Shade
GS Engineering
Sylvania, OH

David M. Smith Conyers, GA

Anil Shah
Solo Cup Co.
Highland Park, IL

Jeremy J. Simkowski
Reynolds Food Packaging
Visalia, CA

Merie R. Snyder Plastics Machinery & Auxiliaries
Denver, CO

Laurynas Straukas
AB Snalge Lithuania

Douglas Van Eeuwen
Lorco LLC
Sterling Heights, MI

Nicole F. Whiteman
Cargile Dow LLC
Minneapolis, MN

Robert J. Whitish
Plastics Ingenuity
Cross Plains, WI

WHY JOIN?

It has never been more important to be a member of your professional society than now, in the current climate of change and volatility in the plastics industry. Now, more than ever, the information you access and the personal networks you create can and will directly impact your future and your career.

Active membership in SPE:
• keeps you current
• keeps you informed
• keeps you connected

The question really isn’t “why join?” but …

WHY NOT?
Manfred Jacob, Founder
Jacob Kunststofftechnik GmbH, Wilhelmsdorf, Germany

Manfred Jacob was born in Furth, Bavaria, Germany in 1942.

His first contact with plastics came in the family kitchen as his father experimented with expanded polystyrene and started the first of many Jacob plastic enterprises business in the late 40s. Manfred went on to become a world class gymnast but a back injury forced him off the German Olympic team. Unable to launch his own body into space, he joined the German Air Force to make the moves in a plane that he could no longer make in the gym.

When Manfred was mustered out of the air force he made an attempt to buy a well established thermoforming business but could not come to terms with the owner. On his way home an almost chance encounter with a friend’s widow left with a small packaging business led to his purchasing the equipment and Jacob Kunststofftechnik was born 1st January 1973. Manfred’s goal: To be an expert in his chosen field.

The equipment consisted of two Illig UA 100 thermoforming machines, two horizontal band saws and one roller trim press. Total employment for this new company was 2.5 people with the main thermoforming machine operator being Manfred. So he set out to learn his chosen craft. I don’t know about the band saws but the original Illig Thermoformer is still in Manfred’s plant to this day.

Driven by this vision of becoming an expert, Manfred Jacob Kunststofftechnik has become one of the largest thermoforming companies in Europe. The Jacob Group’s capabilities now include:

- High pressure formed technical components
- Highly demanding Twin Sheet formed technical parts
- Thermoforming of continuous fiber advanced composite materials and the cutting technology associated with this process
- Traditional custom thermoforming business in producing quality thin gauge and large area thick gauge parts
- Decorative Insert Molded foils and parts with particularly complex trimming associated with this process

A short list of cars using Jacob Dash and Interior Trim components include:

- Ford Mondeo, Ford Focus, Mercedes SLK, PT Cruiser, Renault Clio, Rover 45, and Toyota Agenesis.

Manfred’s inventions are many. One is cavity floor which uses thermoformed parts and self leveling cement to create a solid floor with multiple track ways below for air conditioning, electrical wiring and plumbing. This development would allow the services to run anywhere on an entire floor plan and had become a standard in Europe. Currently, over one million square meters of Cavity Flooring are used in German office buildings alone. Cavity Floor is also used in buildings in Tokyo, London and in South America.

His twin sheet baking pan has replaced wooden trays dating back to the dark ages, and his Thermoformed composite auto bumper is on its way to being the standard for all of BMW cars. To list all his inventions and innovations in thermoforming would take more time and kill more trees than is ecologically responsible, but it’s safe to say if you buy German thermoforming equipment, or are in the packaging industry, Manfred’s
Thermoforming ideas and enhancements are all around you. His parts regularly win awards in the annual thermoforming parts competition.

Manfred is unquestionably a visionary of some standing. He also has the unique ability and willingness to transmit the message and his inbred enthusiasm to all those around him, as any visitor to his plant can testify. He was also responsible for forming the consortium that supplied forming data in relationship to simulation programs on thousands of parts enabling T-Sim to refine their software and make it more accurate.

One of his visions was in approaching a number of local small, but highly technical design, tooling and plastics companies, and all experts in their fields, to consider a form of amalgamating together under one roof. This has had a dramatic effect on all involved. Not only has it formed a tremendously successful and professional group, but each individual company has profited by this close association, an example of synergy in its purest form. This organization was known as QIC and was established in 1995. Much in the way of new technology and product ideas have come out of this collaboration.

This philosophy of becoming stronger through association with other thermoformers and a willingness to share his knowledge also played a major part in Manfred’s long involvement with the Thermoforming Division of the SPE and the ultimate birth of the highly successful European Thermoforming Division. How did this come about?

Manfred became closely associated with two like minded companies, one in Holland and another in the United Kingdom. Personal relationships flourished and they started to meet regularly to share ideas and set standards for processing within their companies. They also would regularly visit the U.S. for the annual thermoforming conferences.

Since those early days, Manfred has been an active participant in the annual thermoforming conferences. Many of us remember his presentation of the “State of the Thermoforming in Europe,” given at the 1995 conference in Independence, Ohio where he made many of us aware of some very interesting alternatives to the way things were done in the U.S.

Knowing that most European producers would never make it to the U.S. for conferences, the idea of a European thermoforming conference began to take shape. With help from the thermoforming division, a European “trial” conference was held in the spring of 1997 at the Manfred Jacob Kunststofftechnik facility, Wilhelmsdorf, Germany. It was here that the term “Spirit of Thermoforming” was first used.

Spurred on by the success of the event in Germany, a group of six European Thermoformers visited Chicago for a meeting with the SPE and the Thermoforming Division to discuss forming the European thermoforming division. The decision was made not only to form the division, but also to attempt to hold an International thermoforming conference in March 1998 in Ghent, Belgium. Since then four more highly successful European conferences have been held and in the first SPE Division outside of the U.S. “The European Thermoforming Division of SPE” was founded.

At the last conference in Viareggio, Italy, Manfred was honored as the father of that division. He was awarded for his services to the ETD and to the European thermoforming industry in general.

Now semi retired, Manfred still spends time inventing, teaching his grandchildren English, as well as golfing, skiing and driving as close to mach speed as the autobahn allows.
Every year The SPE Thermoforming Division selects an individual who has made an outstanding contribution to our industry and awards them the Thermoformer of the Year award.

The award in the past has gone to industry pioneers like Bo Stratton and Sam Shapiro, who were among the first to found thermoforming companies and develop our industry. We have included machine designers and builders Gaylord Brown and Robert Butzko and toolmaker John Greip, individuals who helped develop the equipment and mold ideas we all use today. We have also honored engineers like Lew Blanchard and Stephen Sweig, who developed and patented new methods of thermoforming. Additionally, we have featured educators like Bill McConnell, Jim Throne and Herman R. Osmers, who have both spread the word and were key figures in founding the Thermoforming Division.

We’re looking for more individuals like these and we’re turning to the Thermoforming community to find them. Requirements would include several of the following:

➢ Founder or Owner of a Thermoforming Company
➢ Patents Developed
➢ Is currently active in or recently retired from the Thermoforming Industry
➢ Is a Processor – or capable of processing
➢ Someone who developed new markets for or started a new trend or style of Thermoforming
➢ Significant contributions to the work of the Thermoforming Division Board of Directors

➢ Has made a significant educational contribution to the Thermoforming Industry.

If you would like to bring someone who meets some or all of these requirements to the attention of the Thermoforming Division, please fill out a nomination form and a one-to two-page biography and forward it to:

Thermoforming Division Awards Committee
% Productive Plastics, Inc.
Hal Gilham
103 West Park Drive
Mt. Laurel, NJ 08045
Tel: 856-778-4300
Fax: 856-234-3310
Email: halg@productiveplastics.com

You can also find the form and see all the past winners at www.thermoformingdivision.com in the Thermoformer of the Year section.

You can submit nominations and bios at any time but please keep in mind our deadline for submissions is no later than December 1st of each year, so nominations received after that time will go forward to the next year.
The Awards Committee is now accepting nominations for the 2006 THERMOFORMER OF THE YEAR. Please help us by identifying worthy candidates. This prestigious honor will be awarded to a member of our industry that has made a significant contribution to the Thermoforming Industry in a Technical, Educational, or Management aspect of Thermoforming. Nominees will be evaluated and voted on by the Thermoforming Board of Directors at the Winter 2006 meeting. The deadline for submitting nominations is December 1st, 2005. Please complete the form below and include all biographical information.

Person Nominated: ________________________________ Title: ________________________________
Firm or Institution: ___
Street Address: _____________________________ City, State, Zip: _____________________________
Telephone: ____________________ Fax: _________________________ E-mail: ________________________

Biographical Information:
• Nominee’s Experience in the Thermoforming Industry.
• Nominee’s Education (include degrees, year granted, name and location of university)
• Prior corporate or academic affiliations (include company and/or institutions, title, and approximate dates of affiliations)
• Professional society affiliations
• Professional honors and awards.
• Publications and patents (please attach list).
• Evaluation of the effect of this individual’s achievement on technology and progress of the plastics industry. (To support nomination, attach substantial documentation of these achievements.)
• Other significant accomplishments in the field of plastics.
• Professional achievements in plastics (summarize specific achievements upon which this nomination is based on a separate sheet).

Individual Submitting Nomination: ________________________________ Title: ________________________________
Firm or Institution: ___
Address: _____________________________ City, State, Zip: _____________________________
Phone: ____________________ Fax: _________________________ E-mail: ________________________

Signature: ______________________________________ Date: __________________

(ALL NOMINATIONS MUST BE SIGNED)

Please submit all nominations to: Hal Gilham,
Productive Plastics, 103 West Park Drive
Mt. Laurel, New Jersey 08045
May 4 – 8, 2005
National Plastics Museum
Sheraton Four Points Hotel
Leominster, Massachusetts

RESERVATIONS:
CALL 978-534-9000

REQUEST SPE ROOM RATE OF $95.00
(Deadline for reservations April 4, 2005)
35 miles from Boston Logan Airport

Wednesday, May 4, 2005
Executive Committee Arrive

Thursday, May 5, 2005
Sheraton Four Points
Boardroom
9:30 am - 5:00 pm - Executive Committee - Boardroom

Friday, May 6, 2005
Sheraton Four Points
8:00 am - 9:30 a.m. - Technical Chairs meet with Executive Committee - Boardroom
9:00 a.m. - 11:00 a.m. - Machinery Committee Meeting - Gershwin Room
9:00 a.m. - 11:00 a.m. - Materials Committee Meeting - Cole Porter Room
9:00 a.m. - 11:00 a.m. - Processing Committee Meeting - Irving Berlin Room
8:00 a.m. - 3:00 pm - Other Committee Meetings - Rodgers & Hammerstein Room
3:30 pm - 5:00 pm - Tour National Plastics Museum
Lunch & Dinner on Your Own

Saturday, May 7, 2005
7:30 am - 8:30 am - Breakfast - National Plastics Museum
8:30 am - Noon - Board of Directors Meeting - National Plastics Museum
12:00 pm - 1:00 pm - Tour Plastics Museum
1:30 pm - Board Bus at National Plastics Museum - Box Lunch on Bus - travel to Universal Plastics for Plant Tour
4:00 pm - 5:00 pm - Hosted Cocktail Reception at Colony Club - DRESS CODE: JACKET & TIE
5:00 pm - 6:30 pm - Dinner - Colony Club
7:00 pm - Bus Trip back to Sheraton Four Points in Leominster

Sunday, May 8, 2005
Depart
These sponsors enable us to publish Thermoforming QUARTERLY

Visit the SPE website at www.4spe.org

Premier Material Concepts™
Your needs. Real solutions.

Premier Material Concepts™ is a custom extruder of sheet and roll stock for the thermoforming industry. We specialize in:

- Impact & Modified Acrylic
- ABS
- TPE
- PP
- HIPS
- PE
- Specialty Compounds

Please contact Premier Material Concepts™ with your custom plastic and extrusion needs today!

1-877-BUYPMC6 • www.buyPMC.com • eric.hausserman@buypmc.com

Premier Material Concepts™ is a Rowmark® Company
The SPE Thermoforming Division is shown presenting the proceeds from a 50/50 split from the net proceeds of the 2004 Thermoforming Conference in Indianapolis. The check was in the amount of $49,136.68. Shown, left to right, are: Karen Winkler, International SPE President; Jack Hill, Thermoforming Board Member; Gwen Mathis, Conference Coordinator; Susan Oderwald, SPE Executive Director; and Roger Kipp, Thermoforming Division Chairman.

Milwaukee

These sponsors enable us to publish Thermoforming QUARTERLY

The new RFT Custom thermoformer offers quick-change versatility for demanding custom runs.

When your need is for short- or long-run, custom, form, trim and stack operations on virtually any material, you don’t have to settle for less than a Lyle. Call 989-435-7717 for details, or visit our website – www.lyleindustries.com.
LEAD TECHNICAL ARTICLE

Automotive Plastic Fuel Tank Systems

BY KENNETH W. ALBAUGH, BIELOMATIK, INC., NEW HUDSON, MI

Abstract

The manufacturing of Plastic Fuel Systems [PFS] is an ever-changing and technology-driven field. The field is influenced by governmental emission standards that are becoming tougher to meet with plastic fuel tanks. Several new technologies have been developed to accommodate the environmental legislative changes.

Introduction

PFS have evolved over many years. The first plastic tank was produced in Germany in the mid 1970s. Fuel systems are a tightly regulated product falling under local, state and federal standards for safety and emissions. Today automotive plastic fuel tanks are produced in North America only by a handful of large Tier I suppliers. The manufacturing of PFS is a very large financial undertaking and is burdened with a tremendous amount of liability. Products are required to meet or exceed regulations up to 15 years and/or 150,000 miles from the date of the auto sale.

Most automotive gasoline applications that use a PFS call for a six-layer COEX material construction. This is currently configured with outer and inner layers of high-density polyethylene (HDPE). Two layers of linear low-density PE (adhesive) sandwich an ethylene vinyl alcohol (EVOH) core. The material code2 for the tank is <PE-HD,E/VAL,PE-LLD>. Figure 1 illustrates the typical layer configuration.

Process Methods and Equipment

The following paragraphs will provide a very brief description on manufacturing of PFS. Each company has its own very unique way of producing PFS and thus only very basic information can be discussed.

The product begins in the molding phase. This is accomplished today by two basic processes. The first is traditional continuous extrusion blow molding. The other are the newly developed thermoforming processes. The blow molding process uses a six-layer continuous extrusion blow molding head and creates a circular parison. The parison is transferred from the extrusion head to the mold via two methods. The most common method is parison transfer via industrial robot with a specialized end of arm tooling. The shuttle machine style, illustrated in Figure 2, is also used.

1 This paper was presented at 2004 SPE ANTEC. Twin-sheet thermoforming is currently being touted as a method for making automotive gas tanks. This paper provides an overview of the current status of and the standards that must be met by automotive plastic fuel tanks. The paper has been edited by the technical editor, who accepts all responsibility of any errors or omissions.

2 Ed. Note: This is the European standard notation. The typical U.S. notation for this material combination is <HDPE/LLDPE/EVOH/LLDPE/HDPE>.
Thermoforming uses two pre-extruded six-layer sheets. The sheets are loaded into a machine and sent through a reheating oven. When hot, they are transferred to vacuum tools and formed into final molded shapes.

Blow molding has the ability to control wall thickness more accurately during the molding process. Also a blow-molded part has only a pinch edge on the parison ends, whereas a thermoformed part has a pinch edge on the entire circumference of the part.

The key area in the molding process is the pinch edge, Figure 3, which is the area where the parison or sheets are welded together under pressure of the molding machine. The pinch area must have the correct compression to allow for all layers to flow evenly to the edge of the part to create proper adhesion and thus withstand all the vehicle level requirements for burst and environmental testing.

Cooling is also important. The cooling process is required to ensure that the tank is cooled in a manner that will produce repeatable and predictable dimensions for the finished product and then proper fit and function at the OEM. Care must be taken to remove the excess heat from the product in a controlled manner. This is done today using air-cooled fixtures, water-cooled fixtures, and/or ambient air. As a rule, the product is cooled from 100/110°C to 50/40°C, but some companies cool parts to room temperature, 21°C.

The finishing and welding phase of the manufacturing process is when all the needed openings are machined or bored and all external mounted valves, fittings and clips are welded to the tank. With ever-tightening requirements for emissions, all Tier I companies are trying to keep the number of openings to a minimum.

Typical weldments are valves. The valves welded to fuel tanks consist of inlet or fill spuds and vapor management devices. The majority of valves welded to the tank are called grade vent valves or fuel limit level vent valves. These valves are used to control vapor levels in the tank and to allow vapors to escape to filtering systems or even to the engine vapor management system. Fill or inlet valves are designed to allow the tank to be filled and yet keep the tank isolated in no-fill conditions or crash situations.

The finishing operations are completed using several styles of devices. Chipless boring is the most popular method and includes fixed mounted bor-

![Figure 3. Typical COEX pinch edge.](image-url)

![Figure 4. Deflashing System.](image-url)
ing heads to robotically mounted six-axis cutting systems. Figures 5 and 6 show typical boring methods. In the chipless method, a cutting knife is inserted into the plastic and rotated using low revolution speeds and high torque. Cutting scrap material is retained on the boring head and deposited in a recycle receptacle. Other types of surfacing and peeling operations can also be done, but these usually produce cutting debris.

After the openings are machined, the required valves are welded to the tank. Today this is done using hotplate welding. Alternative techniques such as spin welding, vibration, infrared, laser and ultrasonic welding techniques have all failed to meet the tough validation requirements and process constraints. Over many years of fuel tank production, hotplate welding has proved capable of producing welds having strengths that are 90%-95% of parent material strength. The hotplate welding process is also compliant with all sections of the Federal Vehicle Motor Safety Standards (FVMSS) Section 301 for Crashworthiness.

Hotplate welding is defined in DIN Standard 1910. The standard states, “Plastic welding is pressure welding with the application of heat and force with or without filler material. The energies introduced are thermal conduction, radiation, friction (internal and external friction), convection and electrical energy.” Hotplate welding uses three distinct phases, Figure 7. Phase one is heating during which the highest force is applied to the part to remove any surface imperfections and increase thermal conductivity. Changeover time is next. This is the time from the point when the hot plates are removed from between the component and tank and the component and tank move together. The seal phase is when the two components are homogenized and cooled under pressure.

The typical welding process includes process parameters that are adjusted. The main parameters are melt time, temperature, and applied pressure. The melt time for a typical fuel tank weld of 50 mm diameter is 20-25 seconds. The changeover time is 3-5 seconds and the seal time is 15-20 seconds. The total process time is 38-50 seconds. The factor that influences this time is part-to-part flatness. Part temperature and part wall thickness are also major contributors to this time. Most welding plates are aluminum bronze at 250-270°C.
Most hotplate weld testing is destructive testing. Tensile pull or push testing and microtome analysis are usually done. OEMs have different requirements. The main test requirement for hotplate welding is 2000N removal force on a penetrating weld. Approximately 1.0 mm of homogenized materials and 1.0-1.25 mm heat emersion is required and determined by microtome. All customers use the “double bead” criterion for operational speed inspection. This is a very subjective criterion but it is the industry standard for non-destructive visual inspection. Figures 7-9 illustrate the hotplate welding process, tool, and cross-sections of completed welds.

New Technology and Requirements

As federal emissions standards change from LEV I (Low Emission Vehicle) requirements to LEV II and now to PZEV (Partially Zero Emission Vehicle) over the next few years, new testing methods and standards are being developed to insure full compliance to regulations. Tier I suppliers are transitioning to new technologies for producing these lower emission fuel systems. Many companies are exploring alternative processing methods to push the current processing limits to meet the new standards. These include but are not limited to internalization of all valves and components. Another solution is that all external mounted components have some form of post-welding treatment.

The suppliers of plastic tanks must keep apprised of the steel industry, which is making good progress on steels and coatings that can meet the 15-year, 150,000-mile requirement. The steel industry is already able to meet zero permeation requirements.

Summary

All tier suppliers are working hard to meet federal standards and are coming up with very innovative solutions that will carry plastic fuel systems for the next 30 years.

General References

Design Features of a Multi-Cavity Mold Used for High-Cyclic Thermoforming

BY STANLEY R. ROSEN, PLASTIMACH CORPORATION, LAS VEGAS, NV

All mold systems are designed for a specific model of roll fed continuous thermoforming machines and incorporate its specifications within the tooling layout. Parameters for the mold system dimensions are available within the machinery operating manuals.

Essential data includes stroke for each platen, maximum and minimum open and shut height dimensions for both of the moving platens as well as the footprint of the mold area. A complete mold system comprises much more than just the forming cavities; it includes all of the tooling components that make up a complete system. New mold projects often must be held within tight budgetary constraints, as cost is always an important consideration that dictates final mold features.

A mold system consists of two major stand-alone sub-assemblies

The mold base assembly is composed of cavities (either male or female), temperature-controlled mold base, front and rear sheet clamps (occasionally four sided clamps) and spacer bars (Fig. 1).

The opposite mating half comprises either a pressure box or a vacuum seal off box, plugs for female cavities or assists for male cavities, and spacer bars (Fig. 2).

The mold base, pressure and vacuum seal off boxes are available in both adjustable or fixed length configurations. Adjustable tooling has the advantage of multiple usages for a variety of cavities that are less than 2 inches high. Conducting heat from the top surface of a cavity to the temperature-controlled mold base becomes less effective as its height increases. All-purpose tools are less thermally efficient when compared to a properly designed dedicated mold. Variable length tooling may offer only an approximate fit for the most economical cavity layout, thereby creating additional scrap areas within the formed shot. A simple cost comparison of the combination of slower production output and the additional scrap versus the cost of new dedicated tooling will determine which path to follow.

Compromise in the selection of some of the following mold features may be necessary to meet a specified mold budget

(continued on next page)
1. Choice of male or female cavities is often based on what is the best thermoforming option for a high quality part. However, in many cases, either type of cavity would suit the process and a male cavity is often half the cost of a female cavity; male cavities do not require a plug for proper function and it is less expensive to machine the exterior of a cavity than its interior (Fig. 3).

2. The number of cavities specified determines the number of usable components formed with any given machine cycle. Each additional cavity increases the incremental cost of the mold. Therefore, the total quantity of formed parts ordered is the major determinant used when deciding on the number of cavities per mold.

3. Utilizing existing tooling components for a new project can result in considerable savings. This option should be weighed against possible increased plastic waste and inefficient cavity cooling if the existing mold base is too large.

4. Maximizing thermal efficiency of a cavity may necessitate cooling passages within or around the cavity, requiring fluid inlet ports flowing from the mold base. The additional plumbing can be costly, leaving the option of specifying a less effective cooling mode, which can reduce production output per hour.

5. An ejection method for difficult or under-cut parts formed on a multi-cavity mold requires accurate information based on experimental evidence gleaned from a prototype cavity. Air blow off ejection is the simplest procedure and has a zero cost if it can effectively accomplish the task. The most direct and certain method of ejection is a mechanically activated knockout, which entails considerable expense and must be initially designed into the mold. Other solutions might include modifying a continuous undercut segment into one which is interrupted or Teflon® coating the cavity to ease ejection and still allow the formed part to be functional. Teflon® coating acts as a release medium but adds an additional thermal barrier to part cooling, further reducing productivity. It is important to note that Teflon® is difficult and dangerous to remove from a cavity once it is baked on metal. Always consider this coating to be permanent once it has been applied.

6. It is foolhardy to build a multi-cavity mold without first forming a sample part from a prototype cavity. A drawing of the formed part may be geometrically correct, but it does not tell us anything about its rigidity. The “squish” test of a sample in the buyer’s hands provides the last word on the subject.

Details to be developed for the design of mold layout

1. Choice of resin determines the plastic shrinkage coefficient that will be used to increase the dimensions of a mold cavity. The cooled plastic formed part then will shrink to its specified size. Any change in thermoforming resin after a cavity is fabricated can cause serious size alteration of the finished product.

2. Computing the minimum cavity center-to-center dimensions will provide the most effective use of the available cavity area.
 a) Female cavities may be grouped as tightly as is mechanically practical.
 b) Male cavities need to achieve a compromise for the most desirable center-to-center dimensions. Details shown on Fig. 4 are an attempt to provide a guide to the most efficient layout. If the cavities are grouped too closely together, webs can
form and the sidewalls may thin out unacceptably. When cavities are set too far apart, they waste mold space and create unnecessary plastic scrap.

Figure 4. Male mold standard cavity separation.

\[D = A + \left(L - 2 \left(F \times \tan E \right) \right) \]

where:
- \(D \) = center-to-center of cavities \((A + B)\), in. (mm)
- \(A \) = base dimension of the cavity, in. (mm)
- \(B \) = separation of cavities measured at the base of cavity, in. (mm)
- \(L = F \) for small draft angles less than 5°
 or
- \(L = F \times 0.75 \) for draft angles greater than 5° (maximum angle used is 10° for this calculation)
- \(F \) = cavity height, in. (mm)
- \(E \) = draft angle of cavity, °

3. **Good layout procedures** for most polygon or round cavities, both male and female, are best aligned in straight rows to simplify later trimming operations. Triangular parts can be nested to make best use of available mold area. Alternating high and low profile mold section aids in distributing the part wall thickness (Fig. 5).

4. **Cavities closest to the chain index rail** have two factors affecting their placement. This area may have a different sheet-heating pattern than the rest of the web due to the heat loss to the metal chain rail and may require an increase of edge distance to maintain part quality. The pressure box wall thickness dimension should be added to the cavity edge distance allowance (Fig. 6).

5. The maximum overall length of the mold in the index direction cannot be greater than the maximum index stroke of the chain. Overall length of the mold includes the thickness of the front and rear sheet clamps. A rear sheet clamp prevents webs from forming in the back row of the cavities. The previously formed shot retains enough residual heat to become distorted when the mold is closed if not protected by the action of the front sheet clamp gripping the web.

Properties of male or female cavities

The natural thermoformed wall thickness distributions of male and female cavities are 180° opposite to each other when not aided by plugs or assists. A part formed on a male cavity is thicker in its top plane and a female cavity is thinnest at its base. This type of distribution results as the hot plastic chills when it contacts the first metallic mold face it touches during thermoforming.

A fairly uniform wall thickness can be achieved by utilizing a mechanical aid (plug or assist) mounted in the pressure box to pre-stretch the hot plastic just before vacuum or pressure is activated. Timing is important to prevent the mechanical aids from chilling the sheet and disturbing the distribution within the cavity. By pre-stretching the hot sheet, these devices help to discourage the formation of webs and result in a more uniform wall thickness distribution.

Plugs which tend to remain in intimate contact with the sheet for a relatively long time can be fabricated from either temperature controlled (continued on next page)
aluminum or insulated syntactic foam to minimize heat transfer from sheet to plug. Large corner radii and smooth surface finish are used to reduce the plug’s coefficient of friction, which helps the hot plastic slip smoothly over the plug. A new prototype plug often is altered during development of a thermoformed prototype sample to avoid costly modification after a multicavity mold is completed.

Cavity materials and fabricating techniques

Many sorts of materials have been used to fabricate a thermoforming cavity – wood, plaster, epoxy, silicone rubber, and even concrete. All of the materials named are very poor conductors of heat and may find occasional use in forming a few prototype parts or for slowly producing small quantities of parts. Continuous production thermoforming machines require rapid heat transfer to achieve economic speeds in the range of 10-30 cycles per minute. Only aluminum, copper and silver have a high enough heat conductivity coefficient to meet the cyclic conditions. Aluminum meets the low weight and cost criteria as a practical all-around mold material. Aluminum mold cavities from the earliest days of thermoforming have been cast in fine sand using a carved wooden pattern as the model for the cavity. However, since the advent of computer-aided machining, the majority of molds are now machined from aluminum plate or bar, with each cavity an accurate twin to the others.

Aluminum-filled epoxy cavities can be operated economically on continuous forming equipment (3-8 cycles per minute) if they are relatively thin 0.38 to 0.63 inches (9.7 to 16 mm) high and mounted directly on a temperature-controlled mold base. These cavities can be fabricated to reproduce complicated detail from a model and are far less costly than a machined aluminum mold for this purpose.

Methods for quickly venting male and female cavities during the thermoforming process

Venting of cavities can be accomplished using small drilled holes, thin slots or porous non-metallic mold materials (Fig. 7). Female cavities often require a low pre-vacuum 3-5 inches of mercury (21 to 35 kPa) to evacuate the majority of residual air volume when plug forming. All of these methods attempt to purge the air between the hot sheet and the cavity in the shortest possible time so that thermoforming can take place as rapidly as possibly. If any air remains entrapped, pimples and fisheye blemishes will appear on the flat planes of the shot.

Commonly used drilled vent holes of #76-.020 inches (0.5 mm) in diameter leave only a small cosmetic blemish which is generally acceptable but its vent area is quite tiny .0003 sq. in. (0.196 sq. mm). A venting slot .015 in. (0.4 mm) wide x 1.00 in. (25.4 mm) long has an area 50 times as great and will increase air evacuation by that multiplier. Porous mold materials can be used on flat faces to successfully vent all the residual air but may cause low clarity on transparent plastics and excessive wear problems on fine detail surfaces.

A female cavity requiring a plug increases the internal cavity air pressure as the plug’s rapid movement displaces the cavity air volume. The internal cavity pressure can be lowered by judicious use of a low vacuum. A high vacuum can cause the sheet to lose contact with the plug and thin out both part bottom and walls. A very weak vacuum may cause air pressure to build up, resulting in bursting the sheet and ruining the shot.

When very large quantities of shots are to be thermoformed, the tooling cost per unit part becomes negligible and the mold can be designed to incorporate every desired production feature. When lesser quantities are to be produced, the mold budget decides which features will be selected, to the detriment of efficient output. Design engineering of all products is a compromise of what a customer is willing to pay versus what he is willing to accept.
Thermoforming: Growth and Evolution

Part II

By James L. Throne, Sherwood Technologies, Inc., Dunedin, FL 34698 and Peter J. Mooney, Plastics Custom Research Services, Advance, NC 27006

Abstract

Thermoforming is the process of heating and shaping plastic sheet into rigid containers, components of final assemblies, and stand-alone end-use parts. The value of all thermoformed parts produced in North America in 2003 exceeded U.S. $10 billion. Traditionally, about 3/4 of all thermoformed products are produced from sheet of 1.5 mm or less in thickness and are primarily rigid disposable packaging products. Most of the rest is produced from sheet of 3 mm or more in thickness and are primarily durable structural goods.

Thermoforming has benefited by its ability to fabricate thin-walled parts having large areas, using relatively inexpensive, single-sided aluminum tooling. Its deficiencies – variable wall thickness, the added cost of sheet and trim regrind, and extensive trimming and additional cost to reprocess the trim – are offset by the ability to economically produce low-volume, thick-walled parts or high-volume thin-walled parts.

The advances in thermoforming technology in the past decade have allowed the industry to grow at a rate that exceeded the growth rate of the plastics industry in general. However, this pattern has changed in the past few years. Newer advances in plastic materials, tooling, forming machinery, and auxiliary equipment are needed to regain earlier growth rate momentum.

This paper considers several emerging technologies such as forming composite sheet materials, surface decoration, and new material development. It also considers the effect of globalization on both thin-gauge and heavy-gauge domestic thermoformers.

“New” Technologies to Advance the Industry

As pontificated in Part I, many extant technologies have not been fully exploited. This section highlights some of those technologies that appear to provide thermoformers with future market advantage.

Forming Composite/Laminated Structures

Heavy-gauge thermoforming has very thoroughly mined the “pretty part” or “easy” applications, where the part is made of unreinforced plastic and is designed to be incorporated into or fastened onto a supporting structure. Formers now need to go beyond their current comfort zones to new materials and processing variants. There are two general types of formed structures – single-layer composite materials that are formed into non-appearance parts, and thermoformed “skins” or “shells” that are thermoformed, then backed with composite materials.

Single-Layer Composites. A military drone structure made of matched-mold glass-reinforced nylon composite was an early commercial application of a non-appearance single-layer structural product. The composite bumper structure for the recent BMW 5 vehicle is another single-layer composite application. The reinforcing medium is usually either woven or non-woven continuous glass mat. In general, matched tooling is required and the sheet must slip or slide into the mold to avoid substantial fiber breakage (1). Furthermore, the force needed to bend the composite into even gentle shapes is usually quite high. As a result, forming presses for such applications are more akin to compression molding presses than conventional thermoforming presses.

1 The authors were invited to present this paper in a special session at 2005 SPE ANTEC, but the abstract was not accepted. It is in two parts. The first part was published in TFQ 24:1, 1Q05.
Most applications have focused on forming thick composite sheet (2). However, composite sheets having thicknesses less than 1.5 mm (0.060 inches) are now commercially available (3,4). Glass levels are typically 10% to 20% by weight, but they can be less, depending on the applications. The focus will be on structural applications where the parts must have large surface areas but must be thin-walled.

Laminated Structures. The plastics industry has had success commercializing multilayer structures where one of the layers is a high-performance composite and another layer is a cosmetic shell. The best example is found in the sanitaryware industry where spas, shower stalls, and tub surrounds are fabricated of thermoformed ABS sheet that are backed with spray-up chopped fiberglass-reinforced polyester resin (FRP). Automotive innovators such as DeLorean and Bricklin adopted similar techniques in the 1980s to produce exterior car parts. Today some models of the SMART car in Europe boast of laminated parts.

The resurgence of this technology is due in part to automated methods of handling the reinforcing layer. Robots apply the fiberglass- or filler-impregnated resin (often polyurethane) to the formed “skin” residing in the lower half of a matched mold press. Then the press is closed, expressing air and compressing, shaping, and fully reacting the reinforcing layer. Although the automotive industry was apparently the first to adopt this technology, the marine and farm equipment industries are actively pursuing it (5,6).

In-Mold Decoration

In-mold decoration is not a new concept. Paper labels with pressure-sensitive adhesive layers were developed for thin-gauge containers in the 1980s. And rotational molders have been pre-applying heat-activated decoration to mold surfaces for a decade or more. Recently the automotive industry has been considering paint film technology as a way of minimizing the economic cost and environmental hazards of conventional “wet” exterior surface painting (7).

Paint film can be either single-layered or multi-layered. Polycarbonate is the preferred single-layer paint film (8). Multi-layer films are usually structures on the order of 0.5 mm (0.020 inches) in thickness. The film consists of at least a high-gloss, weatherable and durable clear outer layer (e.g., a fluoropolymer), a pigmented color layer, and a supporting substrate (9). This film is laminated to a structural sheet. To maintain surface gloss, the laminated sheet is very carefully heated and formed, usually against a male mold. To prevent color wash, care must be taken to ensure that the film is not stretched. Although there have been a few successful applications, the high current film cost, the concern with reprocessing regrind, and the degree of difficulty forming the part are mitigating against rapid non-automotive market penetration.

Nanofillers and Nanofibers

Nanomaterials are substances having dimensions in the range of 1 to 100 nanometers (0.001 to 0.1 mm). There are at least three general categories of nanoparticles – carbon nanotubes, intercalated platelet particles of clay, and near-spherical particles of silica. Carbon-based nanotubes and larger-diameter nanofibers are apparently destined for reinforcement of specialty plastics (10). Nanooclays, primarily intercalated montmorillonite clays, are touted for their reinforcing effects at very low weight fractions of 10% by weight or less (11). Nanosilicas are touted for their ability to increase polymer strength and stiffness without dramatically decreasing impact strength, because the particle sizes are below the Griffin crack initiation size (12). Polymer viscosities are not greatly affected even at loadings in excess of 40 wt-%.

It appears that nanoclay-filled polymers offer opportunities in thin-gauge part thermoforming where stiffness is now achieved only with increased thickness. Polyolefins have good chemical and high temperature resistance but they tend to be weak at elevated temperatures. They appear to be prime candidates for nanoclay fillers.

Nanosilicas are being considered for heavy-gauge part forming applications. To date, nanosilicas are best dispersed in prepolymer that are then polymerized. Cast PMMA is one example. Because the filler particles are so small, forming forces should be substantially more modest than those for equivalently loaded glass-fiber reinforced
Improved mechanical strength can lead to substantial reduction in formed part wall thickness in many industrial parts. Moreover, down-gauging usually leads to improved cycle time and lower production cost. And because nanoparticle sizes [about 20 nm] are far below the wavelength of light [400-700 nm], highly filled cast acrylic sheet remains transparent.

Nanofillers are finding early application in low-viscosity thermosetting prepolymers. Although addition to higher-viscosity thermoplastic polymers is being intensely researched today, uniformity in particle dispersion and distribution through the polymer matrix, and production cost remain major concerns. Nevertheless, the unique property improvements that might be achieved indicate that the thermoforming industry must continue to monitor this new technology.

Others

In this section, we simply highlight some other technologies that might influence future thermoforming developments.

Porous mold materials. There are now two commercial types of porous mold materials – porous aluminum and porous ceramic. Porous aluminum is best used when vacuum or vent hole mark-offs are not acceptable on the formed parts. Open areas and pore sizes range from 8% and 5 μm (13) to 20% and 100 μm (14,15).

Porous ceramics, used for years as liquid and gas filters and high-temperature diffusion plates, can now be fabricated directly into mold structures. Open areas and pore sizes can be tailored to essentially the same characteristics as porous metal. As with porous metal, the ceramic is mixed with a volatile material such as a polymer. The slip is formed against the pattern and dried. It is then fired to vitrify the ceramic and volatilize the pore-forming material. Shrinkage is about 30% or about the same shrinkage level as porcelain. Although the porous ceramics tend to be fragile, they are usually tough enough to be used for a few hundred parts (16).

Newer Polymers. The earliest polymers – camphorated cellulose nitrate and viscose rayon – were based on biological materials. Today, oil-based polymers dominate the thermoforming material palette. However, biopolymers are finding new interest, particularly in rigid packaging applications where compostability and biodegradability are desired. Polylactic acid or PLA, invented by Wallace Carothers in 1932, patented by Dupont in 1954, and available today primarily from Cargill Dow, is the leading polymer in this area (17,18). PLA processes as a “stiff polystyrene.” Although it is currently more expensive than current packaging materials, its “earth friendliness” often outweighs the additional cost.

Biopolymers based on polyhydroxybutyrate (PHB) may also offer thermoforming opportunities. PHB is reported to be a rather brittle highly crystalline polymer with properties similar to those of polystyrene. When copolymerized with polyhydroxyvalerate (PHV), the polymer degradation rate at elevated temperature is greatly reduced (19). It is thought that these polymers are best suited for medical applications.

Polymers based on norbornene are now commercial (20). These cycloolefins are produced by reacting ethylene or propylene with cyclopentadiene. The polymers are amorphous with glass transition temperatures that can be increased from 30°C to 230°C by increasing the norbornene content. Commercial grades have norbornene concentrations of 40 to 60 mol-% and Tgs from 70°C to 170°C. They are FDA food contact-approved and steam-sterilizable. It is reported that cycloolefins process more like PVCs than polyolefins.

Although these materials are not yet major players in thermoforming, there appear to be many future packaging applications.

“Moldless” prototyping. Since the 1930s, heat has been used to produce generous bends in plastics (21). Strip heating was introduced during WWII and again the allowable bends were generous. Cut sheet was fabricated into sharp-edged shapes by gluing. The objective of making sharp bends without excessive gluing has always required accurate machining techniques. Computer-driven three-axis (continued on next page)
machines are now being used in conjunction with precise bending protocols and exacting gluing procedures to produce very elaborate structures directly from sheet (22). These allow designs to be very quickly reduced to prototypes or commercially functional products.

Summary

Thermoforming, being the art and engineering of fabricating functional plastic parts from sheet, is maturing into a viable, competitive technology in packaging and structural parts. The future of thermoforming depends on quickly adapting advances in composites, nanofillers, and other commercialized technologies. The global scene will undoubtedly dictate future business decisions regarding offshore production, consolidation, and diversification.

References

3. PennFibre, 2434 Bristol Rd., Bensalem, PA, 19020.
5. DKI Form a.s., Rundforbivej 281, DK-2850 Naerum, Denmark.
6. VEC LLC (formerly Virtual Engineered Composites Technology division of Genmar Holdings), 639 Keystone Rd., Greenville, PA, 16125.
8. Lexan™ SLX polycarbonate, GE Advanced Materials, Southfield, MI.
10. The NanotubeSite lists dozens of universities and research laboratories active in C_{60} carbon-based nanotubes (and other geometries). Insofar as can be determined, none of these sites provide applications. The NASA nanotube site index has “applications” as a topic, but the location is blank. One major university active in this area is Inorganic Chemistry Laboratory, University of Oxford, South Parks Rd., Oxford OX1 3QR, UK.
11. Nanocor, 1500 W. Shure Dr., Arlington Hts., IL 60004.
12. Hanse Chemie AG, Charlottenburger Str. 9, 21502 Geesthacht, Germany.
13. Metapor™ and Espor™, Portec, Ltd., Barbara-Reinhart-Str. 22, P.O. Box 3139, CH 8404, Winterthur, Switzerland.
15. Porvair Technology, Inc., Clywedog Road South, Wrexham LL13 9KS, North Wales, UK.
16. Mould D/ATLAS M 130 porous casting system, ALWA GmbH, Roentgenstrasse 1, DE 48599, Gronau, Germany. [Note: The air-permeable casting system will tolerate 90°C mold temperature. Shrinkage in the casting system is about 30%.]
17. Natureworks™, Cargill Dow LLC, P.O. Box 5830, MS114, Minneapolis, MN 55440-5830.
19. PHB and PHB-PHV copolymers available from Goodfellow Corporation, 800 Lancaster Avenue, Berwyn, PA 19312-1780.

Correction: In Part I, we stated that the earliest roll-fed transformers were developed in Germany in the 1930s. Stan Rosen correctly pointed out that Clauss B. Strauch Co. of Milwaukee, WI developed the first machine in 1930.
Comparing Concept to Reality\(^1\)

BY JIM THRONE, SHERWOOD TECHNOLOGIES, INC., DUNEDIN, FL

We began our discussion of part design by reviewing why we might not want to quote on a job. If we are serious about fabricating the customer’s concept, we need to understand the methodology in reducing a concept to reality.

Naiveté v. Experience

Before we consider developing a hard cost for a given project, we need to ascertain the technical level the customer brings to the design. Most of us have dealt with customers of at least one of the following levels:

- **Expert Customer.** Fully cognizant of the advantages and limitations of thermoforming in general, conversant of the plastics characteristics, and having a complete understanding in the myriad ways of fabricating his design, in particular.

- **Experienced Customer.** Has designed certain parts in thermoforming in the past but is not up-to-date, vis-à-vis\(^2\), newer processing techniques, mold materials, polymers, and so on.

- **A Non-Thermoforming Technical Customer.** Has extensive experience in blow molding, rotational molding, or injection molding, but has no knowledge of the differences between these techniques and thermoforming.

- **A Technically Naïve Customer.** Knows little about plastics and nothing about thermoforming. Has always purchased his plastic products to either mate with or package his non-plastic products.

- **The Totally Naïve Customer.** Has a great idea worked out on the back of a Burger King napkin, has no funding, no customer, and no idea how to reduce his idea to reality.

We all agree that it is very difficult to treat each of these in the same fashion. In other words, a checklist of things necessary to reconcile prior to quotation might be too technical for the naïve customer and an insult to the experienced one. Nevertheless, we should all keep in mind before every take-off and landing, the pilot and copilot are required to complete an extensive checklist, regardless of their years of experience and the number of times they had flown the specific airplane. So let’s take a look at a typical design checklist.

General Advantages and Limitations of Thermoforming

We all know the advantages and limitations of our skills. But the customer may not. So tell him/her. Some advantages:

- Lower tooling costs
- Quicker design-to-prototype time
- Quicker prototype-to-production time
- Relatively wide selection of polymers, grades
- Large surface area per unit thickness
- Economic production of a few pieces (heavy gauge) or many, many pieces (thin gauge)

Some limitations:

- Non-uniform wall thickness
- Single-surface molds
- Hollow parts difficult
- Sheet cost
- Extensive trimming, recycling needed
• Mostly neat plastics (few reinforced and highly filled plastics)
• Wide forming windows desired (needed)

The Material Issue

We, along with the astute customer, need to discuss material choices in some detail. It is not enough for the customer to specify “general purpose polystyrene.” He/she needs to work with us to develop a list of property requirements. In other words, what are the elements of the environment in which the product must perform? Some examples are:

* Environmental temperatures (high and low)
* Corrosive/erosive conditions
* Static/dynamic loading conditions
* Impact conditions
* Surface quality
* Product lifetime
* Assembly restrictions (if any)

And we must all be aware that some of these conditions are compound. For example, the product may need to withstand dynamic loading at high temperature in a corrosive environment. And the customer must understand that not all grades of plastics that meet the desired criteria are available in sheet form.

Before we can discuss design concepts with our customer, we need to review them ourselves. We’ll continue this litany after our review.

Keywords: advantages, limitations, material choice, experienced customer, naïve customer
These sponsors enable us to publish Thermoforming QUARTERLY

Paul Lapointe
Standex Engraving Group
5901 Lewis Rd.
Sandston, VA 23150
Ph: 804/236-3065
Fax: 804/226-3462

These sponsors enable us to publish Thermoforming QUARTERLY

BUNZL EXTRUSION

QUALITY EXTRUDED SHEET for Thermoforming

- Acrylic
- Impact Acrylic
- HIPS
- ABS
- Coextrusion

SOLARKOTE A
SOLARKOTE H
weatherable coextrusion
(for HIPS and ABS)

SOLARKOTE is a registered trademark belonging to Atosina.

Contact us for more information about our custom products:
2121 Old Dunbar Rd., West Columbia, SC 29172
Phone: 803.796.0600 | Fax: 803.791.9620
email: john.temple@bunzlcolumbia.com | www.bunzlcolumbia.com

PROTERM

Industry-leading process heating capabilities for just about every industry that needs to finish a product!

From simple heater arrays to complete convyorized ovens, PROTERM™ completes your project from product analysis, testing, design, to final build. Whether you’re finishing textiles, converting film or foils, thermoforming plastics, or powder coating fenders, you can rely on PROTERM™ for complete design, installation and start-up support.

Contact a PROTERM™ Applications Specialist for assistance at 1-800-793-2077.

For more information...
Visit our web site at www.pro-therm.com

ANTEC Boston
May 1-5, 2005
Society of Plastics Engineers
A Revolution in Plastics

www.wecoproduots.com

Let us offer expert professional assistance for all your Infrared needs...From Ceramic Elements to Full Oven Systems...WE CAN HELP Quartz, Quartz Tungsten, Halogen all from STOCK! Fully assembled Reflectors to ease oven construction....Panel Heaters and Full Oven Platens constructed to your Specifications

901 Tacoma Court Clio, Michigan 48420
810-686-7221 fax 810-686-7564
BOOK REVIEW

Over the years, Hanser Verlag, Munich and Hanser Gardner, Cinty, have been publishing introductory softback texts in their “Understanding …” series. Don Hylton, Fellow of the Society and a long-standing board member, recently published this excellent monograph.

Of course, this is not the first book devoted to plastics testing. My reference library includes Vishu Shah’s *Handbook of Plastics Testing Technology*, Vincent Mathot’s *Calorimetry and Thermal Analysis of Polymers*, Gunther Kampf’s *Characterization of Plastics by Physical Methods*, and Nicholas Cheremisinoff’s *Polymer-Plastics Test Methods*. In addition there are many other books that relate test results to polymer properties.

So, why do we need a new book in plastics testing? Simply put, nearly all books overwhelm the beginning reader. For example, Kampf details “Thermoanalytic Methods” in nearly 20 pages. If your objective is to determine the extent of crystallinity of your sample, Kampf provides you with detailed methodology and the equations.

The same is true regarding reduction times for isothermal oxidation. But if you just need a clear explanation of the test to see if you can use it to determine a specific property, such as crystallinity, you’ll be quickly overwhelmed by Kampf’s detail. And that’s where an introductory text is valuable. Don describes these tests in one page.

There are six chapters to the Hylton book – The Science of Testing, Understanding Polymers and Their Behavior, Mechanical Properties, Thermal Testing, Viscous Flow Properties, and Quality in the Testing Laboratory. He lists 22 general references, four Appendices, and 6 1/2 double-columned index pages. There are brief descriptions of nearly all the tests of significance to thermoformers, including DSC, orientation and shrinkage, melt index and intrinsic viscosity (for the PET people). The tests are usually identified through their ASTM and ISO numbers, where appropriate. The monograph does have some shortcomings, however. It does not describe environmental tests such as ESCR or UV degradation, or mechanical abrasion, or optical and color measurements, or electrical characterization, or flammability tests. This reviewer hopes that when Hylton revises this work, he will include at least brief descriptions of these tests. Ten or fifteen more pages, please, Don!

The chapter on Quality is particularly interesting, as it presents Hylton’s philosophy on laboratory quality. As he points out, laboratory quality differs dramatically from production quality. Quality must be defined, properties must be measurable and controllable, documentation must be required, and these criteria must be universally accepted. By “universally,” it means by the tester, the laboratory, production personnel, corporate management, and above all, by the customer. Hylton adds “continuous improvement” to the quality issue. I would also add “repeatability.” If the lab cannot repeat the test and obtain the same result time after time, quality cannot be defined. To extend this further, if an independent lab cannot duplicate the in-house lab test results, quality is not defined. Replacing “real people” with robotic testers often does not improve data consistency for the simple reason that a “real person” needs to calibrate the mechanical critters and qualify the resulting data. Hylton concludes his monograph with a listing of accrediting and sanctioning agencies.

All in all, an excellent introductory text for beginners and a quick reference source for someone needing general information or just the ASTM number of a specific test. I give it four books out of five.

~ Jim Throne
During the 2004 academic year, I (George Kerekgyarto, on the right in the photo) was fortunate enough to have the time to research grant opportunities in the polymer industry. As part of my sabbatical leave I was trying to expand a polymers program for our Industry and Technology program that consisted primarily small bench top equipment, most of which was in disrepair. During the year we were able to refurbish much of the equipment. I discovered the Society of Plastic Engineers (SPE) had a Thermoforming Division that provided assistance to purchase new Thermoforming equipment through a unique grant opportunity. This equipment would significantly expand our capabilities in our polymer lab. A grant was provided and additional support was provided by Hoover, Inc., MAAC, the manufacturer of the machine, and Millersville University. Dr. James Laporte (on the left in the photo) worked with me on this program. The MAAC machine is behind us in the photo.

Our polymer classes focus on product development through the design and construction of patterns and molds. We begin by teaching our students how to replicate almost anything or create new molds. We use plaster and ceramic materials to teach basic mold development. The next step introduces RTV mold development. Students begin by replicating existing intricate objects, learning how to build a mold for this procedure, which is similar to plaster mold development. Blanket molds are introduced and students work with difficult patterns to gain the necessary experience. Students also experience the lost wax method of casting by developing original pieces and replicating them by using the RTV mold process. Multiple wax castings are produced from the RTV mold. A wax tree is developed for the investment casting process and multiple products are produced by the centrifugal casting method.

Adding thermoforming … will allow our students to expand their abilities to produce molds.

Adding thermoforming to this area will allow our students to expand their abilities to produce
These sponsors enable us to publish **Thermoforming Quarterly**

Sales of new and used plastic equipment

Your First and Only Stop for Buying and Selling in the Plastics Industry

MACHINE SALES • AUCTIONS • LIQUIDATIONS • APPRAISALS • BUSINESS SERVICES

Specializing in arranging the acquisition and sale of plastics production equipment, businesses, divisions, product lines, and manufacturing licenses, Stopol, Inc. is more than just an industry leader. Stopol is a vital industry resource. Drawing on its vast inventory, infinite web of industry contacts, unmatched market intelligence and keen industry knowledge, Stopol offers an endless array of equipment options for both buyers and sellers:

THERMOFORMING • INJECTION • EXTRUSION • BLOWMOLDING • ROTATIONAL MOLDING

And with the emergence of www.stopolauctions.com – Stopol’s new online auction site and marketplace – buying and selling in the plastics industry has never been more easy, efficient and cost-effective, particularly in those in the thermoforming arena. Stopol boasts a rich legacy of success and decades of experience with thermoforming equipment, companies and trade organizations. Stopol’s seasoned professionals serve as strategic partners for our client base, helping companies find cost-effective solutions while maximizing their resources. The results? Innumerable benefits and advantages for both buyers and sellers.

BUYERS’ BENEFITS

- Maximize your purchasing dollars
- Find deals
- Locate specific equipment
- Increase your output
- Don’t have to wait for equipment to become available from OEMs
- Reduce amount of time and money spent looking for machinery
- Upgrade production capabilities
- Limits start-up costs for entrepreneurs

SELLERS’ ADVANTAGES

- Maximize the value of your company and its assets
- Convert surplus machinery into cash quickly
- Market your equipment to a global audience
- Reduce your inventory
- Exchange older machines for newer models

Whether its plastics processing equipment, a plant auction, inventory liquidation, or the sale and acquisition of a business, product line, or manufacturing license, Stopol is your first and only stop for buying and selling in the plastics industry.

STOPOL, Inc., 31875 Solon Road, Solon, OH 44139 U.S.A.

Phone: (440) 498-4000 • Fax: (440) 498-4001 • www.stopol.com

Molds. Student work will begin with basic mold development of some basic thermoforming projects, emphasizing draft angles, and proper mold procedures. As students become familiar with the MAAC thermoformer they can then begin to develop more complex molds using CNC capabilities in aluminum and wood, using a production laboratory next door to the polymers lab. Many of the molds will be wood since the amount of large runs will be minimal. Most of the student and faculty work will be prototype development. We also will begin developing more packaging ideas for other production and manufacturing classes. Having the capability to do sophisticated thermoforming, plug assist, snap back etc. will allow our students to understand and develop ideas using state-of-the-art thermoforming equipment.

This endeavor of acquiring a MAAC thermoformer machine was truly a cooperative effort. Our thanks and gratitude to the wonderful people at SPE who were willing to support the Industry and Technology program at Millersville University with a generous grant to purchase the MAAC thermoformer. A special thanks to MAAC corporation for manufacturing the thermoformer and their financial contribution to the grant program. Also a special thank you to HDJ Corporation and Brown Transmissions for contributing to the shipping costs.

Millersville University is located in Millersville, PA, muweb.millersville.edu.

Dr. Kerekgyarto can be reached at George.Kerekgyarto@millersville.edu.

Dr. Laporte can be reached at james.laporte@millersville.edu.
This summary is intended to help you review the highlights of the Council Meeting held in Atlanta, Georgia on January 22, 2005.

SPE President Karen Winkler called the meeting to order.

The Council weekend format was as follows:

- Council Orientation – this session was provided again as an orientation for the weekend.
- Council Committee of the Whole – there was a separate shortened version of the Council Committee of the Whole meeting.
- Council Meeting – the format had presentations followed by open discussion on the presentations, and ample time for general discussion.

Moment of Silence:

The Council recognized the passing of the following members:

- Barry Huguenin, inaugural President of SPE New Zealand - on July 24, 2004 at the age of 53 after a short battle with cancer.
- George Pickering, SPE’s 1976 President and member since 1959 - on October 13, 2003.

The thousands of Tsunami victims who lost their lives this past December were also included in the Moment of Silence.

Elections:

Council elected the following people as Society Officers for the 2005-2006 term, which begins at ANTEC (May 1-5).

- **President-Elect** – Tim Womer
- **Senior Vice President** – Vicki Flaris
- **Vice President** (nominated by the International Committee) – Hector Dilan

In addition to these formal offices, each year Council also elects a Chair for the Council Committee of the Whole. Barbara Arnold-Feret will hold this position for the 2005-2006 year.

Executive Director Update:

Susan Oderwald reviewed the financial outlook for 2005. SPE is beginning to stabilize revenues in some key areas but still continues to operate under financial pressure. With that in mind, staff and the Finance Committee have reviewed the 2005 approved budget and have already developed some revised expectations on revenue and made adjustments to some expense areas. A full reforecast for 2005 will be distributed to Council at the end of the first quarter and every quarter thereafter.

ANTEC remains SPE’s largest “risk” in terms of overall financial performance. Educational products continue to be an area of concern. Susan was pleased to report that we ended the year with 20,106 members and are on track to see continued modest growth for the early part of 2005. SPE has grown membership (month by month comparisons) every month since July of 2004.

Susan also reported on SPE’s new alliance with the American Management Association (AMA) to provide SPE members with seminar and other educational access to AMA’s resources. SPE members will be able to access these programs at AMA member pricing.

SPE is organizing a formal committee for the governance of Europe.

The SPE Foundation ended 2004 solidly in the black. Additional members have been added to the Foundation Executive Committee, and recruitment for a full Board of Trustees is in full swing.

A copy of the full Executive Director’s Report is available on the website at http://www.4spe.org/

Rebate Plan Proposal:

Bill O’Connell presented the recommendation of the Rebate Committee, the Finance Committee and the Executive Committee that the rebates for 2005 that will be payable in 2006 return to the plan and formula that was in effect before Council voted to suspend rebates for the past two years.

Councilors participated in a group exercise to rank various options for a new rebate proposal for 2007 and beyond. That proposal will be voted on at the May Council meeting.

Other Business:

Presentations and discussions also took place on the following topics:

- State of the Society Discussion
- ANTEC Activity Plan
- Technical Advisory Board Update
- SPE Europe Update
- Committee/Officer Reports
- 2005-2006 Operating Plan
- SEP Foundation Update
- Membership AIM Update

2nd Reading Bylaw Amendment B-9.7:

The following second reading of a proposed amendment to the SPE Bylaws took place as follows:

All votes by Section Councilors, Division Councilors, Councilors at Large, or their proxies on issues that concern changes to fees, dues, and/or rebates shall be recorded to include the name of the Section or Division they are voting for (in the case of Councilors at Large, they shall be listed as “Executive Committee”), the name of the individual, and how the person voted. The records of any such vote shall be available to any member of SPE via the SPE International website. This posting shall be available no later than ten
These sponsors enable us to publish Thermoforming QUARTERLY

GN1406TM Thermoformer

Ideal for:
- Cup and Lid Production
- Tub Production

Features:
- Compact Design
- Inexpensive Tooling
- High Speed Production

We Welcome Your Inquiries.

Plastics for the Thermoforming Industry

Lustran® ABS
Lustran® SAN
Centrex® ASA/AES
Triax® PA/ABS
Durethan® Polyamide

Think Onsrud, #1 Source of Cutting Tools to The Thermoforming Industry

Think Onsrud, #1 Source of Cutting Tools to The Thermoforming Industry

Cutting Tools for ALL Trimming Applications
- Multi-Axis Robotic Routers
- 3 and 5 Axis CNC Routers
- Hand-Held Routers

ONSRUD CUTTER LP
800 Liberty Drive
Libertyville, IL 60048, USA
Ph: 800.234.1560 • Fax: 847.362.5028

LMT-Leitz Metalworking Technology Group

www.onsrud.com • www.plasticsrouting.com

business days after the vote is counted.

This amendment was voted down.

1st Reading of Bylaw Amendment B-51:

The following first reading of a proposed amendment to the SPE Bylaws took place as follows:

The Executive Director shall remit to each Section, Section-in-Formation, Division and Division-in-Formation Treasurer in January of each year rebates and/or funds as set by the Council following the approved procedure set forth in Bylaw B-9. A rebate to a Section-in-Formation or Division-in-Formation shall be for a period of no more than two years.

Committee Meetings:

Eleven committees met prior to the Council meetings including:
- Communications Committee
- Conference Committee
- Constitution & Bylaws Committee
- Divisions Committee
- Education Awards Committee
- Executive Committee
- Finance Committee
- International Committee
- Sections Committee
- Student Activities Committee
- SPE Foundation Executive Committee

Presentations:

All presentations and supporting documentation for Council and committee discussions can be viewed on the SPE website at: http://www4spe.org/communities/leadership/0501/materials.php.

Contributions:

SPE is grateful to the following organizations that made contributions in support of SPE and The SPE Foundation:

- Jim Griffing, Composites Division: $2,800 presentation from proceeds of the Composites/Auto Division Conference
- Tom Sloss, Connecticut Section: $1,000 to The SPE Foundation, representing the fifth payment of a 5-year pledge
- Jordan Rotheiser, Decorating & Assembly Division: $3,800 for 38 members; and profit share of $5,437 from TopCon
- Roger Kipp, Gwen Mathis and Jack Hill, Thermoforming Division, presented $49,136.68 from the proceeds of the Thermoforming Conference
GET READY TO SOAR AT THE 15th Annual Thermoforming Conference

Midwest Airlines Convention Center
Milwaukee, Wisconsin

September 24-27, 2005

We need your continued support and your efforts on membership recruitment!!
These sponsors enable us to publish **Thermoforming Quarterly**

If you want to lead you have to get in-line.

By far, the most efficient way to produce thermoformed packaging is with a Welex In-Line Extrusion System.

Welex Incorporated
850 Jolly Road, Blue Bell, PA 19422
Tel (215) 542-8000 FAX (215) 542-9841
E-mail: welex@welex.com

The Smart Choice for Vinyl Sheet & Film

- Standard Formulations to Meet Most Requirements
- Standard and Custom Colors
- In-Line Laminating
- Standard Surfaces and Textures Available
- Low Minimum Quantities
- Delivery-Typically 3 weeks or less

Leading the world in innovation & customer service

Walton Plastics, Inc.

Call today for a fast quote
1-800-719-9258
440-786-7711 • Fax: 440-232-3187
Cleveland, Ohio

Email: ddrzik@gltcos.com • Web: www.waltonplastics.com

From The Editor

Thermoforming Quarterly welcomes letters from its readers. All letters are subject to editing for clarity and space and must be signed. Send to: Mail Bag, Thermoforming Quarterly, P.O. Box 471, Lindale, Georgia 30147-1027, fax 706/295-4276 or e-mail to: gmathis224@aol.com.

Questions?

Please Contact: Laura Pichon Ex-Tech Plastics 815/678-2131 Ext. 624 lpichon@extechplastics.com

We Appreciate Your Support!
GEISS INTRODUCES NEW TECHNOLOGY TO THE THERMOFORMING INDUSTRY

Worldwide we are the only specialist to offer complete solutions for plastic processing. At GEISS we design and manufacture thermoforming machines, molds, CNC trimming centers and the necessary trimming fixtures. True to our motto “one step ahead” we solve today the tasks of tomorrow.

FLASH heating elements
The GEISS heating system utilizes halogen heating elements, which reduces the heating times up to 50% and decreases energy usage by up to 70%.

Adjustable and programmable MOLD FRAME
Mold frame can be adjusted for any mold that can be installed in the machine, which reduces setup time and eliminates the need for individual mold frames. The setup of mold frame is stored in the mold recipe.

CNC Trimming machines with ultrasonic cutting
In addition to conventional trimming with a spindle GEISS offers ultrasonic cutting for material that cannot be trimmed by conventional means.

Contact us for a detailed analysis of your current or future thermoforming applications utilizing all or some of the GEISS technologies. This analysis is a program that incorporates many parameters and is performed by a GEISS representative at no charge.

Geiss Thermoforming USA, LLC; 1831 Howard Street, Suite D; Elk Grove, IL 60007
tel: 847 364 7628
fax: 847 364 7968
internet: www.geiss-ttt.com
e-mail: geissusa@aol.com
Thermoformers, have you discovered a forming tip that you are willing to share with your fellow formers? A time saver? Or a cost saver? Or something that will save wear and tear on your machine? Or your employees? Then the Forming TIPS column is for you!

Just send Jim Throne a fax at 727-734-5081, outlining your tip in less than a couple hundred words. You can include drawings, sketches, whatever. Thanks!
YOU ASKED – WE LISTENED

Due to the many surveys requesting that we change the dates of the annual Thermoforming Conference, the Board has listened and beginning in 2006, we are pleased to announce the new dates.

Sunday, September 17 through Wednesday, September 20, 2006

“CREATIVITY & INNOVATION IN THERMOFORMING”

Renaissance Nashville Hotel & Nashville Convention Center

General Chairman:
Martin Stephenson
Placon Corporation
Phone: 608-275-7215
E-Mail: mstep@placon.com

Technical Chairman:
Mike Lowery
Premier Plastics
Phone: 414-423-5940 Ext. 102
E-Mail: mikel@lowerytech.com

Quick Change Cylinder Locks

BENEFITS...
- Improve tool change over times...
 by more than 50%
- Self aligning, precisely repeatable
- No bolts no wrenches
- Adaptable to all tools and components
- Simple to install

Call for our new catalog
Tel: 937.295.3672 www.segen-online.com

EDWARD D. SEGEN & CO., LLC
A TOOLING TECH GROUP COMPANY
P.O. Box 319, 100 Enterprise Dr., Ft. Loramie, OH 45845

These sponsors enable us to publish Thermoforming QUARTERLY

Ultra-Metric Tool Co.

We Design & Build Thermoform Tooling That Molds Relationships

30+ Years of Superior Service:
- Complete Turnkey Service
- Product Design & Prototypes
- CAD/CAM Tool Engineering
- Continuous High Speed Tooling
- 3rd Motion Machine Driven
- Form & Trim-In-Line
- Form & Trim-In-Place
- Custom Built Mold Bases
- H2O Cooled Male/Female Molds
- Matched Metal Punch & Die Sets
- Large CNC Milling & CNC Turning
- Deep Hole Gun Drilling
- On-time Delivery

sales@umthermoform.com
www.umthermoform.com

Thermoforming QUARTERLY 36
Society of Plastics Engineers
PO Box 403, Brookfield, CT 06804-0403 USA
Telephone: +1.203.740.5403
Fax: +1.203.775.8490
www.4spe.org

Applicant Information

Name:
first | last | mi

Applicant Type:
- [] Member
- [] Student (must supply graduation date ________)

Job Title:

Company Name and Business Address (or College):
company/college:
address:
city:
state:
zip:
country:

Work Phone:
()

Fax:
()

Home Phone:
()

Email: used for society business only

Home Address: (please provide)

address:

city:
state:
zip:
country:

Preferred Mailing Address:
- [] Home
- [] Business

Job Function: (choose only one)

- [] Consulting
- [] Design
- [] Education
- [] General Management
- [] Library
- [] Manufacturing
- [] Marketing/Sales
- [] Purchasing
- [] Quality Control
- [] R & D
- [] Retired
- [] Student
- [] Tech Support
- [] Other

Gender:
- [] Male
- [] Female

Birth Date: (mm/dd/yyyy)

The SPE Online Membership Directory is included with membership. Your information will automatically be included.

- [] Exclude my email from Online Member Directory
- [] Exclude all my information from Online Member Directory
- [] Exclude my address from all 3rd party mailings

Payment Information

New Member 1 Year
- [] US ($120.00)
- [] Canada ($160.00)
- [] Euro (€123.00)

New Member 2 Years
- [] US ($208.00)
- [] Canada ($277.50)
- [] Euro (€215.00)

Student Member
- [] US ($28.00)
- [] Canada ($37.50)
- [] Euro (€24.00)

Membership Amount

Primary Division
FREE

Additional Division(s)

-

cost for each Additional Division

1 year 2 years

- US $6.00 $12.00
- Canada $8.00 $16.00
- Euros €5.00 €10.00

TOTAL

By signing below I agree to be governed by the Constitution and Bylaws of the Society and to promote the objectives of the Society. I certify that the statements made in the application are correct and I authorize SPE and its affiliates to use my phone, fax, address and email to contact me.

signature
date

recommending member (optional)
ID #

CHECK
VISA
AMEX
MASTERCARD

card number

expiration date (mm/yyyy)

PAYMENT MUST ACCOMPANY APPLICATION

Sorry, No Purchase Orders Accepted

Checks must be drawn on US or Canadian banks in US or Canadian funds.
Dues include a 1-year subscription to Plastics Engineering magazine.
SPE membership is valid for twelve months from the month your application is processed.
save over 10%

D 04
These sponsors enable us to publish "Thermoforming QUARTERLY"

MILLER MOLD COMPANY
Serving The Thermoforming Industry Since 1951
3320 Bay Road
Saginaw, MI 48603

TIM WELDON
General Manager
(989) 793-8881
Fax (989) 793-8888
Email: timweldon@millermold.com

50 YEARS PROVIDING SOLUTIONS IN PLASTICS
McClarin Plastics, Inc.
800-233-3189
717-637-2241 • Fax: 717-637-2091
600 Linden Avenue
Hannover, PA 17331
www.mclarinplastics.com
E-Mail: mclarin@mclarinplastics.com

PRIMEX PLASTICS CORPORATION
A Quality Custom Sheet Extruder!
Polystyrene Polyethylene ABS
Polypropylene Polyester Cor-x
1-800-222-5116
www.primeplastics.com
Large enough to handle your requirements,
Small enough to handle your needs...

ZED INDUSTRIES, INC.
Thermoforming & Plastic Packaging Machinery
Mark T. Zelnick
3580 Lightner Road TEL (937) 667-8407
PO Box 458 FAX (937) 667-3340
Vandalia, OH 45377 E-mail: info@zedindustries.com

When it comes to answering your need for quality thermoform tooling, you can’t find a better source than Producto.

- Complete turnkey service
- Tooling machined and assembled with precision
- Deliveries to suit your schedules
- Mold beds up to 70” x 120”

PRODUCTO
PRECISION THERMOFORM TOOLING

- Engineering design using the latest CAD systems and programming technologies
- Gun drilling services and Temperature Control Plates
- Adjustable Pressure Boxes
- Die sets, punches and dies, springs, pins & bushings and a full line of quality accessory items

Producto Corporation
800 Union Ave., Bridgeport, CT 06607
(203) 367-8675
FAX: (203) 368-2597
These sponsors enable us to publish **Thermoforming QUARTERLY**

FUTURE MOLD CORP.
215 S. Welber Street, Farwell, MI 48622
(989) 580-5948 ♦ (989) 580-6179 Fax

THERMOFORMING TOOLS
CUP LIP ROLLERS
MIKE OTTO, SALES MANAGER
www.futuremoldcorp.com mott@futuremoldcorp.com

Advanced Thermoforming Centers

Albert O. Petersen President
3870 W. M-61
Gladwin, Michigan 48624
Phones: 989-435-8045 Fax: 989-435-8046
E-Mail: info@ntmtech.com Web: adv-ntm-tech.com
Mobile: 248-613-0490

Designing Tomorrow’s Automation
Advanced Ventures in Technology, Inc.
Plastics Machinery Manufacturing

Brian Ray President
brian@rayplastics.com
1700 Chablis Avenue
Ontario, CA 91761
909/390-9906 800/423-7859 FAX 909/390-9896
www.rayplastics.com

MODERN MACHINERY

OF BEAVERTON, INC.
CUSTOM CUT SHEET & ROLL FED MACHINERY
OVEN, CONTROL & INDEX RETROFIT KITS
PATENTED ADJUSTABLE CLAMP FRAMES

3031 GUERNSEY ROAD, BEAVERTON, MI
Email: info@modernmachineinc.com

Ray Plastics
The Experts in Thermoforming

RAY PRODUCTS / INC

1700 Chablis Avenue
Ontario, CA 91761
909/390-9906 800/423-7859 FAX 909/390-9896
www.rayplastics.com

Visit us on the web at:
www.cmsna.com
www.cms.it
or email us at
cmssales@cmsna.com

S C H O S T E N G T H & P R E C I S I O N

CMS NORTH AMERICA, INC.
Grand Rapids, MI
800.225.5267

SparTech Plastics
Custom Sheet & Rollstock

Your Source for Innovative Plastic Solutions

27 SparTech Plastic Locations

- Broadest Product Portfolio in the Extrusion Industry Including:
 - ABS
 - HDPE
 - Acrylic
 - Polycarbonate
 - Corrugated Sheet
 - Polypropylene
 - PETG
 - Weatherable ABS
 - High Impact Styrene

888-721-4242
www.spartech.com

The New MAAC!

- Larger Mainframes
- All Encoder Positioning
- Bigger Motors
- Adjustable Clampframes
- Faster Drives
- Guaranteed Cycle Times

4-Week Deliveries!

WWW.MAACMACHINERY.COM
590 Tower Blvd, Carol Stream, IL 60188, Tel: (630) 665-1700

These sponsors enable us to publish Thermoforming QUARTERLY

NescCo

"Get A Grip" on Your Profits!

NescCo • National Extruded Sheet Clamping Company, Inc.

Janice Petersen Vice President
3872 WEST M-61
GLADWIN, MI 48624

PHONE: 989-435-5265
FAX: 989-435-5601
AM0210@A1ACCESS.NET
WWW.NESCCO.COM

Visit us on the web at:
www.cmsna.com
www.cms.it
or email us at
cmssales@cmsna.com

Select Plastics, LLC

Extruded Sheet

7224 Burns St.
Fort Worth, TX 76118
Metro (817) 595-3804
FAX (817) 595-4050
(877) 501-2530

Donald H. Hudson President
INDEX OF SPONSORS

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVANCED VENTURES IN TECHNOLOGY, INC.</td>
<td>39</td>
</tr>
<tr>
<td>ALLEN EXTRUDERS</td>
<td>38</td>
</tr>
<tr>
<td>AMERICAN CATALYTIC TECHNOLOGIES</td>
<td>8</td>
</tr>
<tr>
<td>ARISTECH ACRYLICS</td>
<td>25</td>
</tr>
<tr>
<td>BROWN MACHINE</td>
<td>35</td>
</tr>
<tr>
<td>BUNZL EXTRUSION</td>
<td>26</td>
</tr>
<tr>
<td>CMS NORTH AMERICA</td>
<td>39</td>
</tr>
<tr>
<td>CMT MATERIALS, INC.</td>
<td>38</td>
</tr>
<tr>
<td>EDWARD D. SEGEN & CO.</td>
<td>36</td>
</tr>
<tr>
<td>ENSINGER/PENN FIBRE</td>
<td>32</td>
</tr>
<tr>
<td>FOXMOR GROUP</td>
<td>26</td>
</tr>
<tr>
<td>FUTURE MOLD CORP</td>
<td>39</td>
</tr>
<tr>
<td>GEISS THERMOFORMING</td>
<td>34</td>
</tr>
<tr>
<td>GN PLASTICS</td>
<td>31</td>
</tr>
<tr>
<td>IRWIN RESEARCH & DEVELOPMENT</td>
<td>6</td>
</tr>
<tr>
<td>JRM INTERNATIONAL</td>
<td>25</td>
</tr>
<tr>
<td>KIEFEL TECHNOLOGY</td>
<td>32</td>
</tr>
<tr>
<td>KYDEX</td>
<td>40</td>
</tr>
<tr>
<td>LAND INSTRUMENTS</td>
<td>9</td>
</tr>
<tr>
<td>LANXESS</td>
<td>31</td>
</tr>
<tr>
<td>LYLE</td>
<td>10</td>
</tr>
<tr>
<td>MAAC MACHINERY</td>
<td>39</td>
</tr>
<tr>
<td>McCLARIN PLASTICS</td>
<td>38</td>
</tr>
<tr>
<td>McCONNELL CO</td>
<td>9</td>
</tr>
<tr>
<td>MILLER MOLD CORP</td>
<td>38</td>
</tr>
<tr>
<td>MODERN MACHINERY</td>
<td>39</td>
</tr>
<tr>
<td>NESCCO</td>
<td>39</td>
</tr>
<tr>
<td>NEW CASTLE INDUSTRIES</td>
<td>33</td>
</tr>
<tr>
<td>ONSRUD CUTTER</td>
<td>31</td>
</tr>
<tr>
<td>PLASTICS CONCEPTS</td>
<td>26</td>
</tr>
<tr>
<td>PLASTIMACH</td>
<td>35</td>
</tr>
<tr>
<td>PORTAGE CASTING & MOLD, INC.</td>
<td>9</td>
</tr>
<tr>
<td>PREMIER MATERIAL CONCEPTS</td>
<td>9</td>
</tr>
<tr>
<td>PRIMEX PLASTICS</td>
<td>38</td>
</tr>
<tr>
<td>PROCESSING TECHNOLOGIES</td>
<td>38</td>
</tr>
<tr>
<td>PRODUCTIVE PLASTICS, INC.</td>
<td>9</td>
</tr>
<tr>
<td>PRODUCTO CORPORATION</td>
<td>38</td>
</tr>
<tr>
<td>PROFILE PLASTICS</td>
<td>9</td>
</tr>
<tr>
<td>PROOTHERM</td>
<td>26</td>
</tr>
<tr>
<td>RAY PRODUCTS, INC.</td>
<td>39</td>
</tr>
<tr>
<td>RTP</td>
<td>35</td>
</tr>
<tr>
<td>SELECT PLASTICS</td>
<td>39</td>
</tr>
<tr>
<td>SENCORP</td>
<td>40</td>
</tr>
<tr>
<td>SOLAR PRODUCTS</td>
<td>1</td>
</tr>
<tr>
<td>SPARTECH PLASTICS</td>
<td>39</td>
</tr>
<tr>
<td>STANDEX ENGRAVING GROUP</td>
<td>26</td>
</tr>
<tr>
<td>STOPOF INC.</td>
<td>29</td>
</tr>
<tr>
<td>TEMPCO ELECTRIC</td>
<td>8</td>
</tr>
<tr>
<td>THERMWOOD CORP.</td>
<td>8</td>
</tr>
<tr>
<td>TOOLING TECHNOLOGIES, LLC</td>
<td>25</td>
</tr>
<tr>
<td>TPS</td>
<td>26</td>
</tr>
<tr>
<td>ULTRA-METRIC TOOL CO.</td>
<td>36</td>
</tr>
<tr>
<td>WALTON PLASTICS</td>
<td>33</td>
</tr>
<tr>
<td>WECO PRODUCTS</td>
<td>26</td>
</tr>
<tr>
<td>WELEX, INC.</td>
<td>33</td>
</tr>
<tr>
<td>ZED INDUSTRIES</td>
<td>38</td>
</tr>
</tbody>
</table>

These sponsors enable us to publish **Thermoforming QUARTERLY**

SOLVE COST & PERFORMANCE PROBLEMS

- Over 40 specialized grades satisfy highest performance to lowest cost applications:
 - Aircraft
 - Mass transit
 - Building products
 - Weatherable
 - Conductive/ESD
 - Multi-purpose
- 10 Surface Textures
- Thickness from 0.028” to 0.500”

Certified Fire Ratings:
- UL Std. 94 V-0 and 5V
- UL 746C for signage
- FAR 25.853(a) and (d)
- Class 1/A
- MVSS 302
- ASTM E-662/E-162

Broad Color Selection:
- 34 Standard colors
- 2000+ Custom colors
- Granite patterns
- Fluorescent colors
- Woodgrain patterns

Kleerdex Company, LLC
6685 Low Street
Bloomsburg, PA 17815 USA
Tel: 800-325-3133
Fax: 800-452-0155
E-mail: info@kleerdex.com

www.kydex.com

ISO 9001:2000 and ISO 14001 CERTIFIED

We build machines that build business.™

- Sencorp & Armac In-Line Thermoforming Systems
- CeraPak Blister Packaging Systems
- CeraTek Laboratory Heat Sealers
- Master Tooling Systems
- Machine Retrofits & Rebuilds
- Complete Turnkey System Integration
- Build To Print
- Serving Automotive, Medical, Pharmaceutical, Consumer and Custom Forming Markets

Tel. +1 508 771 9400 fax +1 508 790 0002 email: sales@sencorp-inc.com
web: www.sencorp-inc.com

Thermoforming QUARTERLY 40