unimaginable

un-i-mag-i-na-ble

| ən-i-ma-jə-nə-bəl | adj.

Used to describe what KYDEX, LLC can create — especially in a short run

Our versatile, durable thermoplastic materials meet the environmental and compliance needs of the medical, aircraft, mass transit and building industries. Plus, we have more than 3,500 custom colours and a variety of textures and thicknesses of RoHS-compliant sheet available within days. It’s all designed so you can get exactly what you want, exactly when you want it.

So next time you have a request for the unimaginable, call KYDEX at 800.325.3133.
No empty promises... Just the facts.

We want to do everything
the big guys won't do.

» Resin selection assistance and certification.
» Quotes in 24 hours.
» 2-3 week delivery.
» Evidence of consistency from lot-to-lot.
 - Proof of thermoformability for TPO
 - Process controls and on-line quality data systems
 - Regrind identification and validation
» Technical support.
» Let us help you manage your inventory...
 ask about our stock & release program.

PMC
Your TPO Experts.

Contact PMC with your custom plastic extrusion needs today!
1-877.BUY.PMC6 (289.7626) | www.buy PMC.com | sales@buyPMC.com
Achieve a sustainable balance of performance and cost.

Enabled by QINNEX® technology, UPES® resin as an additive to polyolefins enables significant source reduction while increasing performance at no additional cost.

Environmental Benefits
UPES resin enables improved processability, material source reduction and energy savings.
- Up to 20% material source reduction
- More efficient machine usage
- Recyclable

Improved Performance
When used in thermoforming applications, UPES resin enhances the performance of difficult to mold parts - providing stronger, thinner and stiffer packaging solutions.
- Improved crush strength – by up to 140%
- 33% faster forming rates
- Better part definition
- Shorter start-ups and reduced scrap rates
- Increased machine time availability

Reduced Cost
UPES resin helps thermoformers maintain a cost-competitive advantage while delivering material source reduction and improved performance.
- Downgauge
- Easy processability up to 20% weight loadings
- No additional equipment needed
- Blends well with polyolefins
- No output/rate penalties

NOVA Chemicals
UPES@novachem.com | 724.770.6610 | www.upesresin.com

UPES® and QINNEX® are registered trademarks of NOVA Chemicals Inc.
UPES® resin is a trademark of NOVA Chemicals Inc.
Contents

Departments
Chairman’s Corner 2
Thermoforming in the News 6
The Business of Thermoforming 16
Thermoforming and Sustainability 26
University News 28

Features
Industry Practice 7
Report from Dusseldorf: A Review of Thin-Gauge Thermoforming Technology from the 2010 K-Show
Lead Technical Article 12
Process Cooling for Compounding
Parts Competition Winners 24-25

In This Issue
Correction 6
2011 Conference - Schaumburg, IL 23
Thermoformer of the Year Award Criteria 29

www.thermoformingdivision.com
Chairman’s Corner

“Embrace the Challenge” = Huge Success

First of all, I want to thank all of our sponsors, exhibitors and attendees who made this year’s conference a great success. Secondly, a special word of thanks is in order for Clarissa Schroeder, your conference chairperson, for her dedication and drive to deliver an informative technical program and to manage a successful conference overall. I also would like to acknowledge our scholarship winners: Adam Mix, UW of Madison; Clinton Reges, East Carolina University; and Jerome Fischer, Oakland University. On behalf of the Thermoforming Division, I wish them continued success in their academic and thermoforming careers.

As we drive forward to the close of 2010 and open the doors to a new year in 2011, I want to review some of the areas where your Thermoforming Board is taking action.

2010-2014 Strategic Plan
1. Streamline committee duties by using more on-line meetings between board meetings.
2. Restructure and refine the conference.
3. Develop a communication committee to improve the information flow from the Board to the membership.
4. Reduce costs.

Our goal here, like many other companies and trade organizations, is to create a more efficient board. We have already begun to address one of these areas: many of our technical committees are now meeting online to address items left over from our last board meeting in September. Our next board meeting in February 2011 has an aggressive meeting schedule designed so that board members become more productive during our time together. By holding these periodic meetings between formal board gatherings, we can improve the methods by which we promote our industry and be more effective in bringing to our membership an array of topics and developments in materials and processes.

We are now in the early stages of planning our next board meeting in May at Penn College (Williamsport, PA). As you may know, your board and division are extremely active in providing funding, program assistance and course development at this highly acclaimed technical college. It only makes sense for your board to visit this center of higher education, to experience their passion and develop a strong bond between industry and academia. In this sense, we are true to our mission statement: “Our mission is to facilitate the advancement of thermoforming technologies through education, application, promotion, and research.”

Thermoforming Business Outlook
As Dr. Peter Mooney illustrates in our “Business of Thermoforming” feature this issue, some of our biggest challenges include designing new, innovative products and creating business models that deliver sufficient value for our customer so they will continue to buy. This has been made more difficult by the recession. We are also facing increasing costs from rising health insurance premiums, dealing with more government regulations and potentially a greater federal income tax. There also appears to be a shake-up coming in raw material costs. We are in a roller coaster of ups and downs these days. However, in response to this uncertainty, one of the most important acts we can do as thermoformers and manufacturers is to get out there and get involved with our clients and our markets. Push thermoforming with a PASSION! Explain all the benefits we can offer the markets over alternative closed-molding processes.

BE ACTIVE within your industry instead of sitting around waiting for the phone to ring. It starts with you! If you have any view points or comments please feel free to contact me. I would like to hear from you!

ken@pcmwi.com
New Members

Juan Jose Aguirre Total Petrochemicals USA Deer Park, TX
Sanjeev Armin C&K Plastics Metuchen, NJ
Jammie Arens Advanced Extrusion Inc. Becker, MN
Dave Armstrong Fabri-Kal Corp. Kalamazoo, MI
Chris Atkinson Flecknoe Pty. Ltd. Clevedore, W Australia
Clint Atkinson Superline Plastics Perth, W Australia
Suresh Ayyasamy GDC Inc. Gosben, IN
Andrew P. Bacher Tri-Cor LLC Cleveland, OH
Gordon Beach Display Pack Grand Rapids, MI
Dwayne Bixler Tech II Springfield, OH
Serge Blanchard CGP Europe Torcy
Ron Blitchok Display Pack Grand Rapids, MI
Christoph Bonte Vitalo Industries NV Meulebeke
Marshall Brekke Mikkawnee, WI
Bill J. Burke, Jr. Spring, TX
Cory L. Buxengard Allied Plastics, Inc. Twin Lakes, WI
Patrick M. Cain General Plastics Glendale, WI
Lisa Case Tech II Springfield, OH
Jeeyoung Choi Align Technology San Jose, CA
Todd Chrismer McClarin Plastics Hanover, PA
Nathan Cline Georg Utz Edinburgh, IN
Brad Colson Rapid Granulator Inc. Cranberry Twp, PA
Christopher Corona Cartier & Wilson Co. Columbus, OH
Sandy Crapper Advanced Extrusion Inc. Becker, MN
Gary Crivellaro Speck Plastic Inc. Nazareth, IN
Don Culbertson Omni Technologies Greendale, WI
A. Gaspar Cunha University of Minho Minho
Nirav N. Desai Placon Corp. Madison, WI
Al Diocochea Freetech Plastics Inc. Fremont, CA
Goran Djekanovic AWP Sydney, AU
Tom Douglas Douglas Fabrication & Machine Inc. Wendell, NC
Allen Dunlap Kenson Plastics Inc. Warrendale, PA
Kamal Elidin Elsa, Jr. Octal Petrochemicals Salalah
Perry Engstrom Arlington Heights, IL
Mark Faber CM Packaging Group Lake Zurich, IL
Jay Ford ASI Plastics Port Coquitlam, BC
Brett Franklin Tooling Now Mentor, OH
Bill Gerard Specialty Mfg. Inc. San Diego, CA
Jim Grace Profile Plastics Corp. Lake Bluff, IL
Scott Grant Display Pack Grand Rapids, MI
Carl Griffin Insul-Fab Cornelia, NC
Shane Harris Seeley Int’l. Pty. Ltd. Lonsdale
Dina Hebein Profile Plastics Corp. Lake Bluff, IL
Cory J. Hendricks Corvac Composites Byron Center, MI
Dale A. Hogan Visy Industries Campbellfield
Daniel J. Hribar Plastic Ingenuity Cross Hill, SC
Rocky Jacobs Conco Corp. Tyler, TX
James Johnson Midland Plastics New Berlin, WI
Scott Johnson Charlotte, NC
Alan Jordan CPT Janesville, WI
Chad Kampa Advanced Extrusion Inc. Becker, MN
Phillip Karig Mathelin Bay Associates LLC St. Louis, MO
Rahul Mukerjee Wilbert Plastic Service Huntersville, NC
Mike Matthews Tech II Springfield, OH
Jason Mendoza Tray-Pak Corp. Reading, PA
Pat Montfusco Clear Lam Packaging Elk Grove Village, IL
Robert Mozian SenciaPlas Hyannis, MA
Greg Nagel Burfordville, MO
Dustyn Nance Tech II Springfield, OH
Thomas J. Neumann Greenawald, WI
Chris O’Leary Kenson Plastics Inc. Warrendale, PA
Andy Pavlick Genpak LLC Hope Hull, AL
Doug Payne Proform Plastics Ltd. Frankton, Hamilito
Kevin Pedersen Persona Inc. Watertown, SD
William Person Bloomfield Hills, MI
(continued on next page)
<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randy Pinsch</td>
<td>General Plastics, Milwaukee, WI</td>
</tr>
<tr>
<td>Michael Pugh</td>
<td>Seeley International, Lonsdale</td>
</tr>
<tr>
<td>Robert Rehmel</td>
<td>Barger Packaging, Elkhart, IN</td>
</tr>
<tr>
<td>Tim Riegling</td>
<td>Display Pack, Grand Rapids, MI</td>
</tr>
<tr>
<td>Brandon Roberts</td>
<td>Tech II, St. Paris, OH</td>
</tr>
<tr>
<td>Russell Romocean</td>
<td>Sun America Converting, Alliance, OH</td>
</tr>
<tr>
<td>Chris Schou</td>
<td>Tray-Pak Corp., Reading, PA</td>
</tr>
<tr>
<td>Brent Shannon</td>
<td>Specialty Manufacturing, San Diego, CA</td>
</tr>
<tr>
<td>Kent Shepherd</td>
<td>Plastics Unlimited Inc., Preston, IA</td>
</tr>
<tr>
<td>Fred Simonson</td>
<td>Multisource Mfg. LLC/Victory Tool, Anoka, MN</td>
</tr>
<tr>
<td>Keith D. Smith</td>
<td>Flight Plastics, Wellington</td>
</tr>
<tr>
<td>Kelly South</td>
<td>Barger Packaging, Elkhart, IN</td>
</tr>
<tr>
<td>Chris Spellman</td>
<td>Mold-Tech Midwest, Carol Stream, IL</td>
</tr>
<tr>
<td>Prabhushanker</td>
<td>Srinivasan, StarPet Inc., Asheboro, NC</td>
</tr>
<tr>
<td>Frank Stones</td>
<td>ASI Plastics, Port Coquitlam, BC</td>
</tr>
<tr>
<td>Cameron Streidl</td>
<td>Formed Solutions Inc., Holland, MI</td>
</tr>
<tr>
<td>Masaaki Sueoka</td>
<td>Kyoraku Co. Ltd., Chuo-ku Osaka-Shi, Oska</td>
</tr>
<tr>
<td>Li Sun</td>
<td>Becton Dickinson, Franklin Laakes, NJ</td>
</tr>
<tr>
<td>Varawong Tangitvet</td>
<td>Metal Industries Co. Ltd., Tunapuna</td>
</tr>
<tr>
<td>Indarjit Teelucksingh</td>
<td>Robert Tennyson, Multi-Plastics Extrusion, Lewis Center, OH</td>
</tr>
<tr>
<td>James Michael Thomson</td>
<td>Boltaron Performance Products, Newcomerstown, OH</td>
</tr>
<tr>
<td>Ricardo Vallejos</td>
<td>Pamolsa, Callao, Lima</td>
</tr>
<tr>
<td>Matt Vandivier</td>
<td>Primex Plastics, Richmond, IN</td>
</tr>
<tr>
<td>Anne Walker</td>
<td>Nova Chemical, Monaca, PA</td>
</tr>
<tr>
<td>Robert D. Ward</td>
<td>Thule Inc., Franklin Park, IL</td>
</tr>
<tr>
<td>Phillip Whetstone</td>
<td>Tech II, Springfield, OH</td>
</tr>
<tr>
<td>Sue Williams</td>
<td>Endurial LLC, Costa Mesa, CA</td>
</tr>
<tr>
<td>Dan Williams</td>
<td>Placon Corp., Madison, WI</td>
</tr>
<tr>
<td>Stefan Wilson</td>
<td>Metal Industries Co. Ltd., San Juan</td>
</tr>
<tr>
<td>Terrence Woldorf</td>
<td>CMT Materials Inc., Atteboro, MA</td>
</tr>
<tr>
<td>Tracy C. Wolf</td>
<td>Innovative Plastech Inc., Batavia, IL</td>
</tr>
<tr>
<td>Frank Wolfinger</td>
<td>Placon Corp., Madison, WI</td>
</tr>
<tr>
<td>Sam Woodford</td>
<td>Placon Corp., Madison, WI</td>
</tr>
</tbody>
</table>

Why Join?

It has never been more important to be a member of your professional society than now, in the current climate of change and volatility in the plastics industry. Now, more than ever, the information you access and the personal networks you create can and will directly impact your future and your career.

Active membership in SPE – keeps you current, keeps you informed, and keeps you connected.

The question really isn’t “why join?” but …

Why Not?
2010 Thermoforming Conference
Milwaukee, Wisconsin

Attendees enter the Exhibit Hall as “Embrace the Challenge” gets underway.

Future thermoforming experts learn about the latest technology on display.

Thermoformer of the Year Roger Kipp and family.

Attendees examine some product samples at the Ex-Tech Plastics booth.

The SPE PlastiVan educates local Milwaukee-area students about the wonders of plastics.

A packed session at the conference center is testament to another successful event.

All Conference Photos Courtesy of Dallager Photos, Columbus, OH
InterTrade Industries buys California packaging thermoformer

By Bill Bregar, Plastics News Staff
Posted: October 22nd, 2010

HUNTINGTON BEACH, CA – InterTrade Industries Ltd. has purchased Plastic Concept Inc. in a deal involving two thermoformers in Huntington Beach.

The deal expands InterTrade’s thin-gauge thermoforming capacity, doubles manufacturing space and quadruples its tooling capability. A company spokeswoman said InterTrade will continue to run Plastic Concept’s factory and retain its employees. Workforce numbers were not available.

Plastic Concept adds to InterTrade’s blister and clamshell operations. InterTrade specializes in vacuum and pressure forming of heavy-gauge products for markets including aerospace, military, automotive, electronics, medical and consumer products. It also does in-line forming.

Terms were not disclosed for the purchase announced on October 21st.

Plastic Concept has nine thermoforming machines that specialize in thin-gauge plastics, for retail packaging and other markets. The company employs 22 and generated 2009 sales of $4.2 million, according to Plastics News’ most recent thermoformers ranking. InterTrade said it will retain all Plastic Concepts employees.

Creative Plastics International Acquires Thermoforming Assets of SeaGate Plastics

Released: 11/11/2010

JACKSON CENTER, OH – Creative Plastics International, Inc. (New Washington, OH) announced today that it has acquired the thermoforming division assets of SeaGate Plastics in Tecumseh, Michigan. This production will be transferred to Creative Plastics facilities, located along the I-75 corridor near Jackson Center, Ohio.

Kevin Fink, President of SeaGate Plastics, stressed that “While SeaGate has spun off its thermoform operation, we will continue to operate the extrusion facilities in both Ohio and Michigan.”

Gerald Wurm, President of Creative Plastics, stated that the SeaGate customers “can continue to expect high-quality products with uninterrupted supply and top-notch service. This transfer will be advantageous to SeaGate customers who will now have access to other types of vac-grade materials, larger part sizes of up to 8 x 10 feet, pressure forming, higher volume rotary forming and roll fed inline product offerings.”

Correction

Due to a formatting error on page 19 of our last edition of Thermoforming Quarterly (TQ 3, Vol 29, No. 3), we inadvertently printed a table from “The Business of Thermoforming” article with some missing data. The corrected table is printed below.

<table>
<thead>
<tr>
<th>SPECIFIC WEIGHT</th>
<th>SHEET PRICE</th>
<th>SCRAP PRICE</th>
<th>% SKELETAL WASTE AND SCRAP</th>
<th>ENERGY CONSUMPTION (GN)</th>
<th>NUMBER OF CAVITIES PER TOOL</th>
<th>ORDER SIZE</th>
<th>COST OF LABOR</th>
<th>ELECTRICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.35</td>
<td>1.63</td>
<td>0.38</td>
<td>11</td>
<td>6.8</td>
<td>10</td>
<td>2000000</td>
<td>19.20</td>
<td>0.128</td>
</tr>
<tr>
<td>1.35</td>
<td>1.63</td>
<td>0.38</td>
<td>25</td>
<td>70</td>
<td>N/A</td>
<td>N/A</td>
<td>19.20</td>
<td>0.128</td>
</tr>
</tbody>
</table>

Table 2. Variables Common to All Materials.
On the first day of “K” 2010, I was one of the first at the gate and when the show opened, I was like a kid in a candy store eager to verify the claims made by so many thermoforming OEMs. There were a lot of press releases in the many plastics publications leading up to the show and I needed to see for myself the state of technology on display.

In this report, I list the details of machinery (in no particular order), tooling and I have added my comments on the actual demonstrations and special features that, in my opinion, should be well-noted by those interested in purchasing new thermoforming machinery. In some cases I have added diagrams that will better explain the usefulness of some of those features. Unfortunately, we do not have enough space in one article to discuss all the thermoforming machinery configurations available today, so I will only be making mention of those showcased at “K” this year.

Configuration # 1
Form then Trim then Stack – all operations are performed in separate stations while material is still captive in the chain rails.

An example of such a configuration was showcased by Kiefel Technologies, Inc. of Freilassing, Germany. Their new KMD80 steel rule machine, with separate forming and trimming stations and an up-stacker system ran at a remarkable 45 cycles per minute producing a plug-assisted fruit clamshell on an 8-cavity tool manufactured by Techno Trading A/S.

The majority of the machinery showcased at the show this year featured trim-in-place technology, so before proceeding any further, we’ll take a closer look at this technology.

Configuration #2
Trim-In-Place Thermoformers – the part is formed and trimmed in the form station.

The sharp edge of the knife only partially penetrates the sheet, creating a sealed chamber between the heated sheet and the mold cavity. Once the forming air pressure and/or the forming vacuum is turned off, the knife is driven through the sheet cutting the formed part from the web.

The majority of the machinery showcased at the show this year featured trim-in-place technology, so before proceeding any further, we’ll take a closer look at this technology.

The trim-in-place feature is available in various thermoforming machinery formats. The type of format chosen depends on the geometry of the final plastic part and how the processor would like the finished parts presented to the packer or the downstream automation equipment. The illustrations on page 8 show a few of those formats.

Illustration 1: Form/Trim/Stack.

Illustration 2: Trim-in-Place Tooling.
Configuration #3:

Form and Trim-in-place then Stack – The form and trim operations are performed in one station and then the parts are moved to another station for the stacking operation.

Paddle Type Retrieval System

Often in when using the single station trim-in-place configuration, parts can be retrieved via a paddle that enters the form station and picks up the trim parts before the next cycle. At the OMV stand, the paddle was used to place the preformed labels in the mold cavities and at the same time to pick out the formed labeled parts and place them on a conveyor.

TIML: Thermoforming In-Mold Labeling

Even more impressive is the fact that this same machine configuration can be configured to allow for a pre-printed label to be automatically placed into the mold (by the same parts removal paddle) prior to the platens closing. This is known as TIML (Thermoforming In-mold labeling) and although I first saw this done commercially in the early 1980’s at the company my father was running (Nampak, Mono Containers) in South Africa. The advent of new label materials and faster automation equipment is rapidly making this a very viable option for parts decorating and will, in my opinion, take a large chunk of business from the IML (Injection In-Mold Labeling) industry.

Such a TIML machine was showcased by OMV Machinery S.R.L. of Verona, Italy where seven labels were simultaneously picked from label magazines then pre-formed and placed in a 7-cavity euro tub mold (single row) and were running consistently at 14cpm. OMV did a great job in simplifying the process to take full advantage of their patented in-mold placement and retrieval system.

Trim-in-Place & Tilt

Staying with the trim-in-place technique, a very popular European thermoforming configuration is the tilt-mold system for stacking. This technique is becoming more popular in the USA for the manufacture of tubs, lids and smaller trays.

I am personally very excited about this technology as I cut my thermoforming teeth when I was only 16 years old when I ran four such thermoformers, first built by Habomat in 1967 (model T100).
When I saw this old machine on display at the Wikon stand, I could not help reminiscing over the countless hours I spent toiling over the mechanical cams, micro switches and mechanical gears that were required to dial in a product.

With these small but remarkable machines, I was able to secure a contract for airline juice cups for the outgoing flights from Cape Town.

Mark Strachan at Wikon booth in Dusseldorf.

Thomas Piesik of Wikon Thermoform Ltd. & Co. KG of Luebeck, Germany has taken these old machines and rebuilt a newer version for use in today’s market. While they would be considered a miniature thermoformer in the predominantly large-bed thermoforming industry in the US, I believe it still has a place in the industry where a small filling or printing house would like to easily manufacture their own cups, tubs and lids.

Further advancements have been made to the trim/tilt/stack technology so that taller, thinner walled parts that would normally crush easily when stacked can now be stacked in nested fashion while promoting much faster forming cycles.

A – The formed cup is picked up by the stacker mandrel.
B – The formed cup is turned 180 degrees.
C – The formed cup is placed into the stacker magazine, tapered end first.

Illustration 5: Below sheet line former with trim-in-place, tilt-to-stack feature with 180 degree swing.

The only disadvantage of these machines is that one is not able to form above the sheet line to include features such as high “U” flanges. Some OEMs have included features which allow the chain rails to pivot down and away from the form station after each form cycle.

Other companies that showcased the form/trim and tilt-to-stack configurations were:

ILLIG Maschinenbau GmbH Co. demonstrated a model RDM 70K with a 27-cavity APET drink cup at 45cpm. This model also included many energy saving features.

Kiefel Technologies, Inc. demonstrated a model KTR4 trim-in-place and tilt machine with their “BEST 75/39” vertical stacker. This machine was producing APET drinking cups with the following dimensions: 80mm diameter, 100.5mm deep, 6.1g, 1mm thick on an 18-cavity tool manufactured by BoschSprang at a rate of 45cpm using form air saving technology.

Gabler Maschinenbau GmbH showcased a new M60 trim and tilt former with a 24-cavity drinking cup tool for APET at 38cpm. The up and down movement of the form platen is driven via servo cam drive while the tilt is achieved via a separate servo motor. The tooling was manufactured by BoschSprang BV of The Netherlands and because I was intrigued with the superb clarity of the parts, I went to the BoschSprang stand where they were running a Gabler M90 trim and tilt machine for PP cups (60 cavities at 38cpm). The PP cups were so clear that I thought they looked like APET cups. I discovered that the high clarity sheet was supplied by Sabic and Martijn Haex of BoschSprang also attributed the high clarity of the cups to a new plug material from CMT Materials, Inc. known as Hytac-FLXR5.

Meaf Machines B.V of The Netherlands showcased their new trim and tilt technology which abandons the cam-driven motions of former models and is now replaced with multiple servo drives. The tooling was built by Mold and Matic of Austria.

MEICO (TFT) of Monza, Italy showcased their new trim in place and tilt former built at their WM Wrapping Machinery SA, plant in Switzerland. The new thermoforming machine model FT 500 ran a 15-cavity mold for 95mm diameter PET/PP cups at 45cpm. A patent-pending pivot system uses a combination of servomotor driven cams and levers, based on an innovative double desmodromic system which I was told permits absolute precision of movement, repeatability, and a controlled distribution of forces during the platen movement and cutting phases of the cycle.

TSL – Thermoforming Systems LLC of Union Gap, WA showcased their latest machine, the FT3500 featuring TSL Tilt (continued on next page)
Technology, which was developed to accommodate the growing mid-sized trim-in-place machine market primarily for PP processing. The machine forms and trims parts up to 5.91" (150mm) deep in a single station and has a forming area of 30.51" (775mm) x 17.72" (450mm).

The TSL patent-pending tilt technology is a synchronized dual servo toggle-driven design which provides a rugged, high speed forming platform for a reliable and repeatable thermoforming process. This is the only trim-in-place and tilt machine currently being built in the USA. Moreover, this machine is only a small part of a very large TIML automation line currently being produced by Hekuma GmbH of Eching, Germany. What might prove to be an important development in US thermoforming is the news that Tech II, an Ohio-based injection molding company, will be the first U.S. company to produce TIML-labeled parts using this TSL-Hekuma system.

Configuration #4: Heat, Form & Trim-in-place (aka contact-heat method) – the plastic sheet is heated, formed and trimmed in the same station and then the trimmed parts are moved to a separate stacker. The upper platen is static while the lower platen moves up and down.

The heating is made possible by a hotplate mounted on the lower moving platen which consists of many tiny vent holes and a baffle plate sandwiched in-between to block off the areas where heat should not be applied. When the lower platen moves up and pins the sheet against the knives, air is blown down on the sheet, pinning it against the hot plate for a preset time. The air is then turned around and blown up through the hot plate causing the heated sheet to move into the female mold cavities. After a sufficient cooling time, the knives are driven through the sheet and the parts are trimmed.

The disadvantage of this forming configuration is that until recently one could only form “above sheet line” parts. This is due to the fact that the lower plate is an extremely hard and flat plate against which the forged or steel rule knives trim. New tooling techniques allow for limited “below sheet line” forming.

GN Thermoforming Equipment exhibited their new GN3021DX with robotic stacker, forming a reverse lip tray on a standard contact-heat cut-in-place machine by profiling the lower heater plate. The 8-up common edge tool (no skeletal web in-between the trays) was manufactured by GN and was running at 16-19cpm. D-PET sheet supplied by Octal was 380 microns (0.015") thick.

In conclusion, I was very impressed by the outcome of my findings at the 2010 K-Show as the majority of the pre-show hype proved to be true. I am especially excited about thermoforming in-mold labeling and the impact it is going to have in the very near future on markets worldwide. It also became very clear to me that there has been a dramatic upswing in the economy and that thermoforming companies are purchasing new machines again. I look forward to “K 2013” as I believe we will see many more thermoforming machinery and tooling OEMs offering new, advanced technologies allowing for larger volume production of in-mold decorated parts such as pre-printed sheet, TIML and more.
Need help with your technical school or college expenses?

If you or someone you know is working towards a career in the plastic industry, let the SPE Thermoforming Division help support those education goals.

Within this past year alone, our organization has awarded multiple scholarships! Get involved and take advantage of available support from your plastic industry!

Here is a partial list of schools and colleges whose students have benefited from the Thermoforming Division Scholarship Program:

- UMASS Lowell
- San Jose State
- Pittsburg State
- Penn State Erie
- University of Wisconsin
- Michigan State
- Ferris State
- Madison Technical College
- Clemson University
- Illinois State
- Penn College

Start by completing the application forms at www.thermoformingdivision.com or at www.4spe.com.

High Speed Trimming and Modeling

5-Axis CNC Technology...the Next Generation

- High Performance, Fast, Smooth and Accurate Motions
- Next Generation CNC Control Motion Technology
- Advanced Control Communications with On-line Support
- 3-D Laser Volumetric Accuracy Compensation
- Wide Variety of Machine Sizes and Options
- Available with Dust/Chip Containment Systems

REVERSE! REUSE! RECYCLE!

Thermoformer Parts Suppliers

TPS
Railss Bushings Drinkers & T/C Pin Chain
OMV Chain Drives
Stocking www.thermoformerparts.com

TPS Inc; 3818 Terry Diane; Beaveron, MI 48624

Q/C Clamp Frame
Ph. 800-722-2997
Fax 989-435-3825
tps@ejourney.com
You wouldn’t want to slow down your extruder capacity with a feeder that is undersized, but every day we see plants that limit capacity due to undersized or inefficient cooling systems and pumping capacity that is short of what is required. Today, having an adequate and energy-efficient cooling system is crucial to be competitive.

Cooling requirements have not changed much for extrusion processes; however, confusion still exists as to how much cooling is required, what type of system to choose, and the benefits of each.

In extrusion processes, there are two types of cooling requirements: material cooling and machine cooling. We will also explore elements of process cooling in thermoforming.

Material Cooling

The type and throughput rate of the material processed determines the heat load requirement while the heat transfer device determines the flow rate required. Polyolefins and PVC usually require cooler water, 45-55°F, while resins such as nylons, styrene, polycarbonates and PET process well with higher temperatures, some over 80°F. The formula for material cooling is expressed as follows:

\[
\text{Mass} \times \Delta T \times \text{Specific Heat} / 12,000 = \text{cooling load in chiller tons} \quad (15,000 \text{ for cooling tower applications})
\]

Usually a safety factor of 20 percent is included by auxiliary companies to guarantee sizing. This calculation has been used to create easy guidelines for extrusion processes as follows:

- **40 lbs/ton/hr** for LDPE (coating)
- **50 lbs/ton/hr** for HDPE (pipe/profile/sheet)
- **55 lbs/ton/hr** for LDPE/PP (sheet)
- **75-80 lbs/ton/hr** for PS/ABS (sheet/pipe/profile)
- **80-90 lbs/ton/hr** for PVC

Required flow rates for these cooling applications are:
- water baths and under water pelletizers - 2.4 gpm (or less)
- pipe/profile – 4.8 gpm per ton
- sheet extrusion – 8 gpm per ton and extrusion coating – 12 gpm per ton

Thermoforming

In thermoforming, most cooling requirements are for tempered water in the 80-110°F with some high-speed applications in the 50°F range. Tower water or chiller systems are typically used.

Sizing for mold cooling in thermoforming depends on the amount of material being cooled and is as follows:

- 240 lbs/hr PVC = 1 cooling ton
- 250 lbs/hr HIPS = 1 cooling ton
- 180 lbs/hr PE = 1 cooling ton

The cooling rates are lower for thermoforming as the air used in the molding process helps to cool the material in the mold. Recommended cooling water flow rates for thermoforming are approximately 4.8 gpm per ton and like most applications, achieving turbulent flow in the tool is as important as the temperature of the cooling water. The higher flow rate causes lower temperature differential across the tool and more leads to consistent cooling of the parts.

At 4.8 gpm per ton a rise in temperature of 5°F will occur from the process water inlet to the tool to the outlet. At 2.4 gpm, the temperature rise of process water will be 10°F. You can determine the exact heat load of a tool by using the following formula: \(\text{GPM} \times \Delta T / 24 = \text{chiller tons} \).

Machine Cooling

Some extruder gearboxes and barrels may be air-cooled so the following information pertains to those water-cooled components that have heat exchangers provided on the extruders. The machine cooling requirements are usually for 85°F water. Some manufacturers may request lower temperatures.

- One ton per 100 hp on gearboxes
- Feed throats: up to 3½” - 1 ton each; 4” and up = 2 tons per extruder
- Barrel cooling: 1 ton per inch diameter
- Screw cooling: \(\frac{1}{2} \) ton per inch diameter
- Vacuum pumps: 0.2 tons per pump HP

Add up all material cooling (45-50°F or 85°F, material dependent) and machine cooling requirements (at 85°F) for the number of extruders, and begin the process of selecting the most efficient cooling system. It is also important to consider other plant cooling requirements including air compressors, dryer after-coolers and HVAC requirements.
Different Applications

An interesting difference between injection molding applications and the extrusion processes is that injection molding loads are usually 70-75% hydraulics, with air compressors and other equipment requiring 85°F water and 25-30% material cooling requiring 50°F water. Extrusion processes are almost the opposite, with 70-80% material cooling and 20-30% machine cooling. This has led extrusion companies to lean towards air-cooled chiller systems and to bypass tower systems that require more water treatment, dual sets of process water piping and indoor space. Recent trends show compounders with both higher and lower water temperature requirements are considering tower water systems (possibly with smaller water cooled chillers) as an energy efficient alternative.

Cooling Systems

Considering that a 100 ton cooling tower utilizes a 5-10 hp fan and the same size chiller requires 100+ hp for compressors and condenser fans, even the most efficient chilled water systems cost $9.00-12.00 more per hour for electricity (at $.06 per kW/hr). Costs for a basic 100 ton chilled water system will start at about $95,000 while a 100 ton tower system starts at about $45,000. Costs for a closed-loop tower system will start at about $55,000. Water and water treatment chemicals only slightly reduce the advantage of cooling tower cost savings.

Current chiller design utilizes rotary compressor technology in both screw and scroll compressors. Scroll compressors combined with new refrigerants including R410a which operates at a higher pressure than other refrigerants can provide more cooling tonnage per hp and should be considered for upgrading any chilled water system 10 years old and any reciprocating compressor design. Screw compressors generally utilize R-134a and come in larger sizes starting at 60 tons.

Cooling towers use evaporative cooling to achieve energy efficient cooling at higher water temperatures but have been improved in recent years with “closed loop” designs that provide clean, clear water to process via heat exchangers, coils or fluid cooler designs. In northern and arid climates cooling towers may provide cooling water temperatures easily in the low 70°F range for most of the year. Cooling towers are air-to-water heat exchangers that are based on wet bulb conditions (a temperature and humidity index) and may achieve upper 60°F water temperatures in 100°F weather due to low humidity.

Energy Efficiency

In addition to updating chiller designs, other energy saving devices have become extremely popular. High efficiency motors, variable frequency drives and free cooling system designs are often used for energy savings and gaining rebates from power companies and utilities.

Winter-Koolers, also known as free-cooling fluid coolers, use low ambient conditions in northern climates to cool process water via fan coils.

A 100 ton fluid cooler uses eight 1.5 hp fans and 28 amps at 460v to cool the load. An air-cooled chiller at 220-300 amps will achieve the same result, depending on the type of chiller. This represents a savings of $7.80-$10.00 per hour of operation when air temperatures are 15 degrees lower than process water requirements. Thermostatic switching systems will activate the system automatically at night and during cold weather while the chiller shuts down as the water temperature lowers. These systems require freeze protection and usually provide a payback of 1.5 winters.

Variable frequency drives have become a standard option on cooling towers, chilled water pumping systems and tower fans. They offer excellent energy savings in the range of 30% for most motors, more as systems are operated at partial load, i.e. when fewer process machines
Variable speed drives have come down in price in recent years and provide many benefits in addition to energy savings. Benefits of variable frequency drives include:

- Improved process control (based on temperature or pressure)
- Reduced energy/operating costs
- Built-in soft start
- Reduces water hammer
- Control shut down with loss of power
- Motor performance
- Extends pump life/Reduces maintenance
- Less pump noise

Variable frequency drives may be retro-fitted to existing systems as long as inverter duty motors are being used, making an upgrade a very good choice for reducing energy costs immediately.

Water Treatment

Water treatment is required by all process cooling systems. Some chiller companies will not start up a chiller without filtration equipment located (and operating) upstream of the chiller. Chillers operating at 45˚F or lower require freeze protection as the evaporator may see temperatures at the freezing point.

Chilled water and closed loop systems require industrial corrosion inhibitors as the recirculating fluids become corrosive over time. Chilled water systems require: filtration, corrosion inhibitor (possibly a biocide to prevent biological growth (slime)) and occasional system water tests.

Tower systems require more attention for water treatment. As a tower system evaporates water the mineral content and dissolved solids remain in the system, super-charging it with the undesirable effects of the local water supply. Four components are required for tower water treatment systems: water meter chemical feeder to monitor incoming water and add the appropriate chemical; filtration; biocide feeder; and a bleed-off (conductivity) controller which purges water when dissolved solids become too high.

As the winter falls upon us, it is a very good time to review process cooling systems and get a head start on summer. Items to review can include overall system sizing and easy energy efficiency upgrades such as a new, energy efficient chiller or variable frequency drive controls.

2010 Thermoforming Conference

Milwaukee, Wisconsin

Conference Chair Clarissa Schroeder enjoys a packed show floor in Milwaukee.
PROSPECTIVE AUTHORS

Thermoforming Quarterly® is an “equal opportunity” publisher! You will notice that we have several departments and feature articles. If you have a technical article or other articles you would like to submit, please send to Conor Carlin, Editor. Please send in .doc format. All graphs and photos should be of sufficient size and contrast to provide a sharp printed image.
The State of U.S. Manufacturing

Let’s take a brief look at trends in U.S. manufacturing on which we all depend for the growth of our companies.

We observe in this graphic the trend of the percentage share of manufacturing value-added in U.S. GDP from 1947 to 2004.

The overall trend-line is obviously downward. Yet the implications for manufacturing employment are even more disturbing. Employment in U.S. manufacturing industries has been declining at an average annual rate of 0.1% for the past 60 years whereas factory output has been growing at an average annual rate of 3.4%.

The one bit of good news is that the recovery of manufacturing output here in 2010 has been quite impressive. The value of U.S. manufacturing output has grown every month since January, driven largely by the automotive and electronic equipment industries.

The State of U.S. Thermoforming

This then is the economic environment in which thermoformers and the companies on your material and machinery supply chain operate. Let me turn now to what I see evolving in the two branches of thermoforming – that is, light-gauge film forming (primarily packaging) and heavy-gauge sheet forming (primarily industrial products).

Hopefully most of you know that since 1995 I have been researching and publishing – roughly every 3 years – reports covering both the packaging and industrial thermoforming businesses. I’d like to share with you today some of the data and insights from my two latest reports covering those businesses.

I’ll start by providing the graphic shown on page 13 portraying the share of thermoforming in North American plastics processing.

Packaging thermoforming is obviously the larger segment with 2009 sales of $11.3 billion, based on the consumption of
6.1 billion lbs. of plastic material. Industrial thermoforming is the smaller segment with 2009 sales of $2.6 billion, based on the consumption of 1.3 billion lbs. of plastic material.

Industrial Thermoforming

I’ll address first the industrial thermoforming business. In the slide shown below, I portray the annual changes in the value of North American industrial thermoformed output going back to 1996. We observe that this business boomed in the mid-1990s. It tapered off in the late 1990s and then suffered lost sales in the moderate 2001-2002 recession. It recovered, like the rest of the North American economy, in 2004. Since then its growth dynamic has weakened, culminating in a severe slump in 2009. This estimate of a 10% drop in industrial thermoformed product sales is based on data from the most recent Plastics News survey of thermoformers, published earlier this year. The actual drop may have been worse than 10%. I’ll return to this point momentarily.

Another way to get an assessment of the recent trend of industrial thermoformed output is to examine the trend of key markets in which these processors participate. They are as follows:

Leading Industrial Thermoforming Markets

- agricultural equipment
- aircraft/aerospace
- appliances
- automotive/transportation
- building and construction
- electrical/electronic devices
- signs and displays
- lawn and garden
- marine products
- medical devices
- office products
- recreational/sporting goods

I regard the following table as critical to an understanding of the extent of the setback in industrial thermoforming in recent years and the extent of the challenge recovering from this setback in future years. I gathered data on unit shipments in 10 of these end-use markets from 2004 to 2009, drawn from several industry associations tracking these markets. Here are the sources of these data.

Sources

- Appliances: 2004-2009, major home appliance shipments from the Association of Home Appliance Manufacturers; 2010-2014, PCRS projections
- Automotive: 2004-2009, car and light truck production from Wards Auto; 2010-2014, PCRS projections
- Furniture: 2004-2010, sales of office furniture from the Business & Institutional Furniture Manufacturer’s Association International; 2011-2014, PCRS projections
- Heavy Trucks: 2004-2009 actual data and 2010-2014 projections from ACT Research
- Medical: 2004-2009, PCRS estimates of medical device production; 2010-2014, PCRS projection
- Signs: 2004-2009, sales of profile extruders specializing in the production of signs and displays; 2010-2014, PCRS projections

(continued on next page)
Other: 2004-2009, real GDP growth; 2010-2014, PCRS assumes 3% real GDP growth in 2010 followed by 2.5% 2011-2014

In some cases these associations have put forward predictions for the likely volume of production in 2010 and 2011; in one case (heavy trucks) their forecasts go out to 2014. In all other cases I have made what I believe are conservative projections from 2010 out to 2014.

Here then is the table.

Trends in the Volume of Production in Major Markets Served by Industrial Thermoformers, 2004-2014

(2004 = 100)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appliances</td>
<td>100</td>
<td>100</td>
<td>101</td>
<td>95</td>
<td>86</td>
<td>75</td>
<td>80</td>
<td>87</td>
<td>95</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Automotive</td>
<td>100</td>
<td>101</td>
<td>98</td>
<td>95</td>
<td>80</td>
<td>54</td>
<td>62</td>
<td>71</td>
<td>80</td>
<td>89</td>
<td>100</td>
</tr>
<tr>
<td>Building</td>
<td>100</td>
<td>106</td>
<td>92</td>
<td>69</td>
<td>46</td>
<td>28</td>
<td>37</td>
<td>45</td>
<td>55</td>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>Furniture</td>
<td>100</td>
<td>113</td>
<td>121</td>
<td>128</td>
<td>125</td>
<td>88</td>
<td>83</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>105</td>
</tr>
<tr>
<td>Heavy Trucks</td>
<td>100</td>
<td>117</td>
<td>129</td>
<td>83</td>
<td>72</td>
<td>43</td>
<td>50</td>
<td>76</td>
<td>91</td>
<td>97</td>
<td>94</td>
</tr>
<tr>
<td>Marine</td>
<td>100</td>
<td>99</td>
<td>105</td>
<td>97</td>
<td>81</td>
<td>75</td>
<td>50</td>
<td>65</td>
<td>70</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>Medical</td>
<td>100</td>
<td>102</td>
<td>104</td>
<td>106</td>
<td>108</td>
<td>110</td>
<td>112</td>
<td>114</td>
<td>116</td>
<td>118</td>
<td>120</td>
</tr>
<tr>
<td>RV</td>
<td>100</td>
<td>104</td>
<td>106</td>
<td>95</td>
<td>64</td>
<td>45</td>
<td>62</td>
<td>67</td>
<td>75</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>Signs</td>
<td>100</td>
<td>102</td>
<td>111</td>
<td>103</td>
<td>98</td>
<td>95</td>
<td>96</td>
<td>100</td>
<td>103</td>
<td>106</td>
<td>109</td>
</tr>
<tr>
<td>Other</td>
<td>100</td>
<td>103</td>
<td>106</td>
<td>108</td>
<td>109</td>
<td>106</td>
<td>109</td>
<td>112</td>
<td>115</td>
<td>118</td>
<td>121</td>
</tr>
<tr>
<td>Average</td>
<td>100</td>
<td>105</td>
<td>107</td>
<td>98</td>
<td>87</td>
<td>72</td>
<td>75</td>
<td>82</td>
<td>89</td>
<td>95</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes: 1) The annual averages are unweighted averages.

2) Data are in volume terms except for those for furniture and signs which are in value (sales) terms.

I have taken the data on volume of production from the various associations and converted them into indices starting in 2004. Therefore, all markets have a common starting point of 100. By 2006 most of these markets had index numbers greater than 100. However, by 2007 the volume of production in most markets began dropping back to 100 and below. This downward trend continued into 2009 when only two markets – medical equipment and all other – had volume of production indices greater than 100. Fortunately most of these markets have been rebounding here in 2010. By 2014 this analysis suggests the average volume of production in these 10 markets will be 100 – the same as in 2004, 10 years ago.

On the supply side the glut of capacity created over the period 2004-2008 won’t be eliminated quickly. Thus, as this table suggests, whereas some markets are likely to rebound back to and beyond the 100 index level by 2014, others will take longer to regain that level.

I made assumptions underlying each of my market projections for 2010-2014. They are as follows:

Appliance

In theory the rebound in appliance manufacturing should correlate positively with new housing starts, however the recent trend of new housing starts has been woeful. A Whirlpool official was quoted recently saying that future appliance sales will be driven largely by households replacing old and worn-out machines, not installing new machines in new houses. I would add that Mexican, not American, thermoformers will derive the benefit from the eventual rebound in large appliance production.

Automotive

By 2014 annual car and light truck production will hopefully return to 16-17 million units, the level common in the first half of the decade.

Building

New housing starts last year were 554,000, the lowest total recorded since records began in 1959. New housing starts
exceeded 2 million units in 2004 at the height of the housing bubble. It is totally implausible that we will regain the 2 million level of new housing starts by 2014 – nor, from an economist’s perspective, should we.

Overspending on housing constitutes a gross misallocation of national resources that should go instead to raising productivity and national income.

Furniture
The commercial real estate market will continue to slump in 2010 and 2011, and then rebound out to 2014. Office furniture will follow that trend-line.

Heavy Trucks
Heavy truck production won’t recover to the 2004 level until after 2014.

Marine
Boat sales were down 20% in the first quarter of 2010. That level will hold for the remainder of the year, and then boat production and sales should rebound out to 2014.

Medical
The medical product industry is truly recession-resistant. It grows every year, and it will continue to grow to 2014.

Signs
The production of signs and displays wasn’t impacted that much in 2008-2009, and it should continue to grow to 2014.

Other
The “all other” category is based on the trend of real U.S. GDP. I assume 3% GDP growth here in 2010 and then 2.5% GDP growth out to 2014. This is much slower future growth than the government’s February Budget Statement.

I’ll summarize, therefore, my sense of the past and likely future growth dynamic in regional industrial thermoforming.

Over the period 2004 to 2009 the average annual growth of sales by industrial thermoformers was only 0.5%, mainly due to the difficult economic conditions experienced the past two years. If I assume an average annual price increase of 2.5%, then the average annual change in the volume of output of industrial thermoformed products over the past 5 years was -2.0%. In view of the pent-up demand for durable goods as we emerge from the recession, it is entirely possible that average annual volume growth in industrial thermoformed output could be 5% or more out to 2014. And 5% could be too conservative. For example, if my projections for the various durable goods markets

Recent and Likely Future Growth in the Value and Volume of Industrial Thermoforming, 2004-2014

<table>
<thead>
<tr>
<th>Period</th>
<th>Volume of Production</th>
<th>Inflation</th>
<th>Value of Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2009</td>
<td>-2.0</td>
<td>2.5</td>
<td>0.5</td>
</tr>
<tr>
<td>2010-2014</td>
<td>5.0</td>
<td>2.0</td>
<td>7.0</td>
</tr>
</tbody>
</table>

(continued on next page)
in the foregoing table are reasonably accurate, the average annual growth rate for these 10 key markets from 2009 to 2014 will be 6.8%. If inflation remains subdued at 2%, then the average annual increase in the value of industrial thermoformed products could be in the range of 9-10%.

Packaging Thermoforming

I’ll turn now to address the packaging thermoforming business.

The distribution of markets in packaging thermoforming is very different from that of industrial thermoforming. Food service and food processing constitute roughly three-quarters of the total business. Conventional wisdom suggests these markets are relatively recession-resistant, as is the medical product packaging business.

Nevertheless, as a result of the recession, the value of thermoformed packaging output in 2009 experienced a rare decline of 2.4%.

The setback to average household incomes was such that austerity ruled the day. Families changed their shopping patterns, heading to Wal-Mart, Family Dollar, Goodwill, and other discount outlets for lower-priced items. Producers were forced to lower costs, and this impacted packaging decision-making as well.

What lies ahead for the packaging thermoforming business? I’ve made 3 key assumptions. First, I assume the average annual growth in the volume of production in food-related markets will be 2% – that is, twice the rate of the growth of the U.S. population. Second, I assume average annual growth in the volume of non-food-related markets will be 6.8%, the rate I referred to a minute ago. Third, I assume the market weights of 75% and 25% for food- and non-food-related markets will continue to apply.

Bringing these assumptions together, I arrive at a 3.2% average annual growth rate in the volume of thermoformed packaging out to 2014. I assume an average annual inflation rate of 2.0%, slightly higher than the 1.8% rate that prevailed over the past 5 years. So the average annual increase in the value of production of thermoformed packaging out to 2014 works out at 5.2%.

What are some of the trends evident in packaging thermoforming?

Trends in Packaging Thermoforming

- inline thermoforming
- inmold labeling and printing
- light-weighting
- sustainability
- the new austerity

<table>
<thead>
<tr>
<th>Period</th>
<th>Volume of Production</th>
<th>Inflation</th>
<th>Value of Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2009</td>
<td>3.0</td>
<td>1.8</td>
<td>4.8</td>
</tr>
<tr>
<td>2010-2014</td>
<td>3.2</td>
<td>2.0</td>
<td>5.2</td>
</tr>
</tbody>
</table>
Inline Forming
In all the plastics processing businesses I cover, I see a trend to faster speed and greater control over the process. In packaging thermoforming this means converting from two-step processing – taking extruded sheet to the former – to one-step processing by means of inline sheet extrusion and forming. This may be difficult for custom packaging thermoformers to justify. It makes eminently good sense for high-volume proprietary and captive thermoformers.

Inmold Labeling and Printing
In the same way injection molders have reduced secondary operations by introducing inmold labeling to their operations, thermoformers are taking that route to improved cost-effectiveness. This is also true of distortion printing. This is not an easy capability to take on; getting the registration right is tricky. However, some packaging thermoformers have mastered this technology, and I believe others will follow in their wake.

Light-Weighting of Thermoformed Packaging
Clearly there is a continual drive to lightweight formed cups, lids and other formed packaging to compete against injection molders. However, inevitably we will reach the end of this technological change. We may already be there. Plastic packages are getting thinner and thinner, which compromises the functionality of the package. Ultimately we’ll reach the stage where the packaging is so thin you can’t see it or feel it. I don’t think we want to go there.

Sustainability
I have to confess I’ve always been a sustainability skeptic. I was making a presentation about “Innovations in Plastics” at a conference in Dublin, Ireland, in 2008. At the end of the presentation a guy asked me what I thought about carbon footprint. I told him I think about it as little as I possibly can. However, the reality that we all face, whether we agree with the concept or not, is that sustainability sells. So you simply have to keep up to speed on biopolymers, biodegradable plastics, PCR and all the other plastic materials that will ultimately appeal to the end-use consumer.

The New Austerity
In the wake of the Great Recession, some economists are referring to “the new austerity.” The recession will eventually end. However, it is likely to leave huge scars on the psyche of consumers. Confronted with high unemployment, stagnant real income, limitations on bank lending, higher taxes, higher healthcare costs, the uncertainty created by Congress and the administration – confronted with all this consumers will be far more cautious in their spending patterns. Many products packaged in blister packs, clamshells and trays may encounter slower growth in demand from households determined to live within their means.

Conclusion and Recommendation
Economists, despite all their faults and failings, are clear as to how we can restore the virtuous economic cycle where growth leads to hiring, which leads to higher disposable income, which leads to increased effective demand, which in turn drives growth. We have to become more productive. We put too much emphasis on restoring consumer demand. We need to boost the supply side as well. We simply have to become more productive. GDP growth derives from two macro variables - 1) labor force growth and 2) productivity improvements. That’s it – that’s what GDP growth is all about. Without productivity improvements we will only grow in line with the population. Unemployment will stay elevated, and per capita income will continue to stagnate.

Thermoformers have many options for raising their productivity – namely,

- If you haven’t done so already you need to apply lean manufacturing throughout your whole organization.
- Maximize energy efficiency in every aspect of your plants
- Automate to minimize your total labor force burden. I presume you’ve all done that to some degree already.
- Differentiate your company and your services for a marketing advantage. You wouldn’t be around if you hadn’t followed that principle over the recent past.
- Diversify your processing capabilities. If someone comes to you with a part design that really should be injection molded or blow molded or extruded, you should have the in-house capability or the partner to take on that job.
- Be an integrator. You won’t survive simply being a shoot-and-ship thermoformer – even if you’re a very good one. Be a total solutions provider to your customer with value-adding upstream and downstream capabilities.
- Innovate – In a recovering economy your customers are looking to differentiate their products and services, to rise above the rest. They are wide open to any new innovative component or assembly that can draw attention to their brand. You have to assist them in that process.
- Be forward-thinking – You’re obviously concerned with surviving day-to-day. You’ve been forced to lay off some of your staff, many of them with valuable skill

(continued on next page)
sets. Now you’re at the irreducible minimum. So it’s more important that ever to look ahead to what some call the “reset economy” of the future.

It is axiomatic that industries rise or fall based on their ability to attract, retain and productively use talent across all aptitudes and skill levels – from brilliant design engineers to plant floor operatives.

As the beneficiary of a great education and as a former teacher of economics, I have a passion for education. I suggest the most important challenge we confront as an industry is our inability to invest in our educational system to get young people interested in a career in plastics.

For years the SPE Thermoforming Division has been way ahead of the curve, awarding scholarships to young men and women to pursue an education in plastics. Now you need to redouble that effort. Moreover, you need to convince every other SPE division to do likewise and to coordinate those efforts. If we could pool the funds and human capital resources from the various divisions, we could truly make a difference attracting young people into our profession. We simply don’t have the option of sitting on the sidelines.
September 17 – 20, 2011

Welcome Back to Chicago!

20th Annual Thermoforming Conference

Schaumburg, Illinois (20 minutes from O’Hare Airport)

SAVE THE DATE!!

www.thermoformingdivision.com
Heavy-Gauge – Pressure
1st Place: Specialty Manufacturing Inc.
Enclosure Assembly

Heavy-Gauge – Pressure
2nd Place: Profile Plastics
Progeny Machine Cover

Heavy-Gauge – Vacuum
1st Place: Brentwood Industries
Chrome Bumper Cladding

Heavy-Gauge – Vacuum
2nd Place: Plastilab Technologies
The Vorttice: Competition Cycling Helmet

Heavy-Gauge – Twin-Sheet
Winner: Allied Plastics
Front Bumper with Air Silencer Intake

Roll-Fed – Food
1st Place: Lindar Corporation
Single Cupcake and Muffin Package
Roll-Fed – Food
2nd Place: EverEdge IP
CrushPak – A Crushable Yogurt Container

Roll-Fed – Medical
1st Place: Perfecseal
Surgical Device Package

Roll-Fed – Medical
2nd Place: Tegrant Corporation
Thermo Scientific Pipette Sleeve and Lid for RD Packaging

Roll-Fed – Industrial
1st Place: Vitalo Industries
Automated Medical Tray

Roll-Fed – Industrial
2nd Place: Tegrant Corporation
Motorola FUJI OEM Bluetooth Headset Package

People’s Choice Winner: Grimm Brothers Plastics BreezeDry Cabinet
It seems that last month’s SPE Thermoforming conference drew more than one person skeptical of the many claims surrounding the “green” revolution. Common sense, scientific data, and more reliable information could help processors sort fact from fiction.

When Fabri-Kal Co., one of the largest thermoforming businesses in North America specializing in food service and custom food packaging for the likes of General Mills and Kellogg, began looking at sustainable materials it seemed to be a good fit. David McIntosh, senior engineer Materials & Development, noted that Fabri-Kal supports the technology to reduce U.S. dependence on imported oil and “it was a good fit with Fabri-Kal’s ownership and management philosophy.”

In 2002, as Fabri-Kal began working with the plant starch-based plastic PLA (polylactic acid), Dow was a material supplier to Fabri-Kal, and PLA’s properties were well-suited to the cold-drink cups that Fabri-Kal produced. “PLA had similar shrink to PET and we were already making a line of PET cups, and we had the tooling for PET,” explained McIntosh. “It looked like a drop-in technology. However, that’s not the way it worked.”

Some of the early lessons Fabri-Kal realized was the importance of temperature control and the difficulties of PET-to-PLA conversion for products. Other lessons included:

- The older equipment Fabri-Kal had made it difficult to clean out the material to run PLA
- PET doesn’t melt at the same temperature as PLA
- Equipment had poorer control at lower operating temperatures.

“There are so many ways in which PLA is different from PET, you have to be really careful,” cautioned McIntosh. “There can be cross-contamination problems if there’s a lack of communication between shifts, so plant-wide education is needed to train people in how to handle PLA in a PET plant. PLA requires more control and precision.”

Today, Fabri-Kal processes PLA on a large scale, using high levels of regrind. McIntosh goes so far as to say that he believes the company has the “highest through-put PLA conversion line in the world.”

“Green washing” a plague

That is all good. What McIntosh doesn’t like is the amount of “green washing” going on as competitors and others strive to clam their products are sustainable. “At Fabri-Kal, we try to take the high road with respect to ‘green’ claims,” he said. “There’s a growing recognition of need for clear, meaningful and validated claims. The truth is gaining, partly driven by the FTC (U.S. Federal Trade Commission) and skeptical consumers, but there’s no one single definition of sustainability.”

Fabri-Kal focuses on the use of Life Cycle Inventory, published hard data that’s available to all of its customers. “It’s a tool that allows you to make objective comparisons between options,” said McIntosh. “Data can be used (or abused) in different ways and there’s no single metric for sustainability.”

Greenware is Fabri-Kal’s brand name for its line of drink cups and lids, crystal clear and made from Natureworks’ Ingeo brand of PLA. Fabri-Kal’s marketing approach for its products is based on hard data with “minimal spin,” noted McIntosh. Greenware is marketed for its premium quality and appearance, its homegrown roots (“Made in the USA”) from corn grown in Nebraska, and that it is made of a renewable resource that helps reduce the use of fossil fuel.
There are also disposal options for the cups and lids. “We push our ‘green virtues’ very hard,” McIntosh added, and noted that, “Marketing is a dangerous mix of fact and fiction. Carrying a paper cup versus a foam cup makes you feel better, but it’s fiction that paper is better. We believe in selling the sizzle without trashing the truth.”

McIntosh said that before requiring a product to be made from biopolymers, companies need to assess the options and define the needs and performance requirements. “Compare the options,” he said. “Some customers just want ‘fluff’ so they can say they’re green, and others want to see true sustainability.”

Next, focus on direct, quantifiable benefits, costs and performance. Third, look at the end-of-life claims. “There are too many assumptions to make broad claims, and not all provide the solutions,” said McIntosh. “Do a case-by-case assessment. There’s no one material suited for all applications, so we must look at applications that use other materials.”

McIntosh believes that recycling is a viable answer; however, per capita the amount of waste is going down, even with population growth, and plastics recycling is “woefully low,” he noted. He also noted that the fossil energy content (the amount of fossil fuel required to make 1,000 cups) in PP and HIPS is almost comparable to PLA. [See graph below.]

So how does the industry dispel the myths and misconceptions that drive poor decision making and regulations? First, recognize the fact that there is no significant biodegradation or decomposition in landfills, and “it is not beneficial in any way,” he stated. “Biodegradable is not an effective way to address the plastics issues. Biodegradability is stupid. There, I’ve said it! Biodegradability is not the Holy Grail of sustainable packaging.”

Biodegradability is a “biological process” and “not compatible with an industrial process,” said McIntosh. “Manmade plastics don’t perform like plants in nature. Plastics won’t degrade like leaves in a forest, which is a biological process. Plastics are created through an industrial process, which means there needs to be an industrial process to deal with the disposal.”

[See graph below.]
Dr. Peter Mooney and many industry leaders have stated that “the most important challenge we confront as an industry is our inability to invest in our educational system to get young people interested in a career in plastics.” The Thermoforming Division is playing a key role in rising to this challenge. By equipping today’s students with machinery and technology required for success in plastics processing, the Division is helping to bridge the gap between theory and practice.

The Thermoforming Division matching grant program provides funds to purchase thermoforming equipment for accredited schools. The Division has paid $229,617 in grants to date. If you are an educator, student or professional who would like to advance the thermoforming curriculum at your local school, please visit our website for more details: http://www.thermoformingdivision.com/aarcgrantprograms/index.htm.

<table>
<thead>
<tr>
<th>School</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>A San Jose State University</td>
<td>San Jose</td>
<td>CA</td>
</tr>
<tr>
<td>B Illinois State University</td>
<td>Normal</td>
<td>IL</td>
</tr>
<tr>
<td>C Rochester Institute of Technology</td>
<td>Rochester</td>
<td>NY</td>
</tr>
<tr>
<td>D University of North Texas</td>
<td>Denton</td>
<td>TX</td>
</tr>
<tr>
<td>E U Mass Lowell</td>
<td>Lowell</td>
<td>MA</td>
</tr>
<tr>
<td>F Brown Deer Middle School</td>
<td>Milwaukee</td>
<td>WI</td>
</tr>
<tr>
<td>G Northern Illinois University</td>
<td>Dekalb</td>
<td>IL</td>
</tr>
<tr>
<td>H Morrisville State College</td>
<td>Morrisville</td>
<td>NY</td>
</tr>
<tr>
<td>I Millersville University</td>
<td>Millersville</td>
<td>PA</td>
</tr>
<tr>
<td>J Univ. of Alabama at Birmingham</td>
<td>Birmingham</td>
<td>AL</td>
</tr>
<tr>
<td>K Penn. College of Technology</td>
<td>Williamsport</td>
<td>PA</td>
</tr>
<tr>
<td>L University of Wisconsin - Platteville</td>
<td>Platteville</td>
<td>WI</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>School</th>
<th>City</th>
<th>State</th>
</tr>
</thead>
<tbody>
<tr>
<td>M California State University - Chico</td>
<td>Chico</td>
<td>CA</td>
</tr>
<tr>
<td>N Penn State Erie</td>
<td>Erie</td>
<td>PA</td>
</tr>
<tr>
<td>O Ferris State University</td>
<td>Big Rapids</td>
<td>MI</td>
</tr>
<tr>
<td>P Mount Horeb Middle School</td>
<td>Mount Horeb</td>
<td>WI</td>
</tr>
<tr>
<td>Q Central Connecticut State University</td>
<td>New Britain</td>
<td>CT</td>
</tr>
<tr>
<td>R Eastern Washington University</td>
<td>Cheney</td>
<td>WA</td>
</tr>
<tr>
<td>S Gettysburg Area School District</td>
<td>Gettysburg</td>
<td>PA</td>
</tr>
<tr>
<td>T UCLA</td>
<td>Los Angeles</td>
<td>CA</td>
</tr>
<tr>
<td>U Rhode Island School of Design</td>
<td>Providence</td>
<td>RI</td>
</tr>
<tr>
<td>V Appalachian State University</td>
<td>Boone</td>
<td>NC</td>
</tr>
<tr>
<td>W South Dakota School of Mines & Tech.</td>
<td>Rapid City</td>
<td>SD</td>
</tr>
<tr>
<td>X Yale School of Architecture</td>
<td>New Haven</td>
<td>CT</td>
</tr>
</tbody>
</table>
Thermoformer of the Year 2011

The Awards Committee is now accepting nominations for the 2011 THERMOFORMER OF THE YEAR. Please help us by identifying worthy candidates. This prestigious honor will be awarded to a member of our industry who has made a significant contribution to the thermoforming industry in a technical, educational, or managerial aspect of thermoforming. Nominees will be evaluated and voted on by the Thermoforming Board of Directors at the Winter 2011 meeting. The deadline for submitting nominations is January 15th, 2011. Please complete the form below and include all biographical information.

Person Nominated: ____________________________________ Title: ___________________
Firm or Institution__
Street Address: ____________________________ City, State, Zip: ______________________
Telephone: _______________ Fax: _________________ E-mail: ________________________

Biographical Information:
• Nominee’s Experience in the Thermoforming Industry.
• Nominee’s Education (include degrees, year granted, name and location of university)
• Prior corporate or academic affiliations (include company and/or institutions, title, and approximate dates of affiliations)
• Professional society affiliations
• Professional honors and awards.
• Publications and patents (please attach list).
• Evaluation of the effect of this individual’s achievement on technology and progress of the plastics industry. (To support nomination, attach substantial documentation of these achievements.)
• Other significant accomplishments in the field of plastics.

Individual Submitting Nomination: _______________________ Title: _____________________
Firm or Institution__
Street Address: ____________________________ City, State, Zip: ______________________
Telephone: _______________ Fax: _________________ E-mail: ________________________
Signature: ___ Date: ____________________

(ALL NOMINATIONS MUST BE SIGNED)

Please submit all nominations to: Juliet Goff,
Kal Plastics, 2050 East 48th Street,
Vernon, CA 90058-2022
Phone 323.581.6194, ext. 223 or email at: Juliet@kal-plastics.com
2011 EDITORIAL CALENDAR
Quarterly Deadlines for Copy and Sponsorships

ALL FINAL COPY FOR EDITORIAL APPROVAL
15-FEB Spring 30-APR Summer
31-JUL Fall 15-NOV Winter
Conference Edition Post-Conference Edition

All artwork to be sent in .eps or .jpg format with minimum 300dpi resolution.

SAVE THE DATE!
October 16 thru October 19, 2011
Westin Peachtree Plaza Hotel
Atlanta, Georgia

Fast Flexible Reliable

• Over 50% of the top 25 North American heavy gage thermoformers use KMT Robotic Solutions trimming systems
• Up to 50% higher throughput and more flexibility than a 5 axis CNC
• Automatic fixture locating and spindle alignment
• Improved personnel safety and product quality
• High flexibility allows a variety of part sizes

1.248.829.2800
solutions.na@kmtrobotic.com
www.kmtrobotic.com

Creating value through automation.

MAAC THERMOFORMING MACHINERY

Leader in Twin-Sheet Pressure Forming Technology!

• Single Stations
• Double Enders
• Three-Station Rotaries
• Four-Station Rotaries
• Multi-Station Shuttles
• Oven-Over
• Custom Machines

NOW OFFERING:
• 5-Axis CNC Routers
• Thermoforming Molds
• Part Prototyping
• Machine Replacement & Trade-in Programs

www.maacmachinery.com
590 Tower Blvd, Carol Stream, IL 60188, Tel: (630) 665-1700

BOOK SPACE IN 2011!

Plastics Pioneers: Frank Nissel, CEO, Welex, and Ian Strachan, Global Thermoforming Technologies.

Mytex Polymers - Exhibitor

Zed Industries - Exhibitor

Innovation Briefs Session

The Brown Advantage

Poised to serve you better than any other thermoforming company in the continuous and cut sheet markets...from entry level to total turn-key thermoforming systems.

At Brown we’re more than machines. We’re people who love a challenge.

Let our Process Engineering Team and our Machinery & Tooling Group discover the best process and machine combination for you.

Contact us today at www.brown-machine.com or call 989.435.7741

Brown Machine, LLC
Polymers and Plastics for the Electronics Industry
Monday, May 2
Dr. Young Kim
Samsung Advanced Institute of Technology, Samsung Elec. Co. , Ltd.

Innovations in Engineering - SABIC Approach to New Materials and New Applications
Tuesday, May 3
Tom Stanley
Vice President, Technology, SABIC Innovative Plastics

Industry Dynamics Impacting the Resin Supply Chain
Wednesday, May 4
Howard Rappaport
Global Business Director, Plastics, Chemical Market Associates, Inc.

Reasons to attend:
• 3 New Technology Forums
• NEW special sessions on Fundamentals, Regulatory, OSHA and Design
• Hundreds of technical presentations in 40 different areas of plastics
• Networking opportunities and live updates for first-time attendees, SPE Facebook® and LinkedIn® members, and ANTEC Twitter® followers
• Consultants Corner*: Bring your challenge or problem, and consult with an expert in your area—for FREE!

* by appointment only

Visit www.antec.ws for more information and to register.
From the Editor

If you are an educator, student or advisor in a college or university with a plastics program, we want to hear from you! The SPE Thermoforming Division has a long and rich tradition of working with academic partners. From scholarships and grants to workforce development programs, the division seeks to promote a stronger bond between industry and academia.

Thermoforming Quarterly is proud to publish news and stories related to the science and business of thermoforming:

- New materials development
- New applications
- Innovative technologies
- Industry partnerships
- New or expanding laboratory facilities
- Endowments

We are also interested in hearing from our members and colleagues around the world. If your school or institution has an international partner, please invite them to submit relevant content. We publish press releases, student essays, photos and technical papers. If you would like to arrange an interview, please contact Ken Griep, Academic Programs, at: ken@pcmwi.com or 608.742.7137
MACHINERY COMMITTEE

James Alongi
MAAC Machinery
590 Tower Blvd.
Carol Stream, IL 60188
T: 630.665.1700
F: 630.665.7799
jalongi@maacmachinery.com

Roger Fox
The Foxmor Group
373 S. Country Farm Road
Suite 202
Wheaton, IL 60187
T: 630.653.2200
F: 630.653.1474
rfox@foxmor.com

Hal Gilham
Productive Plastics, Inc.
103 North Park Drive
Mt. Laurel, NJ 08045
T: 856.778.4300
F: 856.234.3310
halg@productiveplastics.com

Bill Kent
Brown Machine
330 North Ross Street
Beaverton, MI 48612
T: 989.435.7741
F: 989.435.2821
bill.kent@brown-machine.com

Don Kruschke (Chair)
TME
31875 Solon Road
Solon, OH 44139
T: 440.498.4000
F: 440.498.4001
donk@allthingsthermoforming.com

Walt Speck (Chair)
Speck Plastics, Inc.
PO Box 421
Nazareth, PA 18064
T: 610.759.1807
F: 610.759.3916
wspeck@speckplastics.com

MATERIALS COMMITTEE

Jim Armor
Armor & Associates
16181 Santa Barbara Lane
Huntington Beach, CA 92649
T: 714.846.7000
F: 714.846.7001
jimarmor@aol.com

Phil Barhouse
Spartech Packaging Technologies
100 Creative Way
PO Box 128
Ripon, WI 54971
T: 920.748.1119
F: 920.748.9466
phil.barhouse@spartech.com

Juliet Goff
Kal Plastics, Inc.
2050 East 48th Street
Vernon, CA 90058-2022
T: 323.581.6194
Juliet@kal-plastics.com

Roger P. Jean (Chair)
Rowmark/PMC
PO Box 1605
2040 Industrial Drive
Findlay, OH 45840
T: 419.742.7137
F: 419.742.2199
keng@thermoformingmc.com

Lola Carere
Thermopro
1600 Cross Point Way
Suite D
Dalul, GA 30097
T: 678.957.3220
F: 678.475.1747
lcarere@thermopro.com

Haydn Forward
Specialty Manufacturing Co.
6790 Nancy Ridge Road
San Diego, CA 92121
T: 858.450.1391
F: 858.450.0400
hforward@smi-mfg.com

Eric Short
Mytex Polymers
1403 Port Road
Jeffersonville, IN 47130-8411
T: 248.705.2830
F: 248.328.8073
eric_short@mytexpolymers.com

Robert G. Porsche
General Plastics
2669 West Mill Road
Milwaukee, WI 53209
T: 414.351.1000
F: 414.351.1284
bob@genplas.com

PROCESSING COMMITTEE

Lola Carere
Thermopro
1600 Cross Point Way
Suite D
Dalul, GA 30097
T: 678.957.3220
F: 678.475.1747
lcarere@thermopro.com

Haydn Forward
Specialty Manufacturing Co.
6790 Nancy Ridge Road
San Diego, CA 92121
T: 858.450.1391
F: 858.450.0400
hforward@smi-mfg.com

Richard Freeman
Freetech Plastics
221 Warm Springs Court
Fremont, CA 94539
T: 510.651.9996
F: 510.651.9917
rfree@freetechplastics.com

Ken Griep
Portage Casting & Mold
2901 Portage Road
Portage, WI 53901
T: 608.742.7137
F: 608.742.2199
ken@pcmwi.com

Steve Hasselbach
CMI Plastics
222 Pepsi Way
Aylmer, NC 28416
T: 704.277.6131
F: 704.277.6132
steve@cmiplastics.com

Bret Joslyn
Joslyn Manufacturing
9400 Valley View Road
Macedonia, OH 44056
T: 330.467.8111
F: 330.467.6574
bret@joslynmfg.com

Stephen Murrill
Profile Plastics
65 S. Waukegan
Lake Bluff, IL 60044
T: 847.604.5100 x29
F: 847.604.8030
smurrill@thermoform.com

Lola Carere
Thermopro
1600 Cross Point Way
Suite D
Dalul, GA 30097
T: 678.957.3220
F: 678.475.1747
lcarere@thermopro.com
Thermoforming Quarterly®

FOURTH QUARTER 2010
VOLUME 29 • NUMBER 4

Sponsor Index

Allen ..34
ANTEC 201133
Brown Machine32
CMT Materials22
CMG ..34
GN Plastics15
GPEC 201130
Kiefel34
KMT ..30
KydexInside Front Cover
MAAC Machinery30
McClarin Plastics15
Nova Chemicals34
PCI ..31
PMCInside Back Cover
Portage Casting & Mold15
Primex Plastics22
Productive Plastics34
Profile Plastics Corp34
PTI22
Ray Products34
Solar Products15
Tempco36
Thermoforming Machinery & Equipment Inc31
Thermwood31
TPS ..11
Zed Industries34

Thermoforming Division Membership Benefits

• Access to industry knowledge from one central location: www.thermoformingdivision.com.
• Subscription to Thermoforming Quarterly, voted “Publication of the Year” by SPE National.
• Exposure to new ideas and trends from across the globe.
• New and innovative part design at the Parts Competition.
• Open dialogue with the entire industry at the annual conference.
• Discounts, discounts, discounts on books, seminars and conferences.
• For managers: workshops and presentations tailored specifically to the needs of your operators.
• For operators: workshops and presentations that will send you home with new tools to improve your performance, make your job easier and help the company’s bottom line.

JOIN D25 TODAY!