MADE IN AMERICA

Big Ideas Loom Large in U.S. Manufacturing

Inside...

2011 Thermoformer of the Year
Thermoforming 2.0: The Thermoformability Index
2011 Scholarship Winners

Page 7
Pages 12-14
Page 30

www.thermoformingdivision.com
Contents

Departments
Chairman’s Corner | 2
Thermoforming in the News | 4-5
The Business of Thermoforming | 8-10
University News | 30

Features
Thermoforming 2.0 | 12-14
Thermoforming Index – A New Test for Sheet

ANTEC Paper | 16-17, 20-22
Optimization of Molding Conditions of Plug-Assisted Thermoformed Thin Containers in a High Speed and Volume Production Context

Lead Technical Article | 24-29
Thermal Radiant Absorption in Thin Semi-Transparent Plastics

In This Issue
2011 Thermoformer of the Year | 7
Steve Murrill, Profile Plastics, Inc.

20th Annual Conference | 19
Sponsorships | 36

www.thermoformingdivision.com
On behalf of the SPE, I would like to welcome you to our annual conference in Schaumburg, Illinois, September 17th – September 20th, 2011. More than ever, the purpose of this conference is to provide a forum to encourage, help and inspire you to continue developing your business strategies.

While sitting on my deck writing this article, I have noticed a cool breeze offering a pleasant change from the recent heat wave most of us have endured. Along with the summer heat, we experienced the failure of our government to positively handle the debt crisis and then we watched as S&P downgraded our AAA credit rating. Similar to the heat, the wasteful spending practices are oppressive. Each of us needs to communicate with our elected officials, on all levels, to let them know that the current practices are hindering the future expansion and success of our businesses.

Now we are watching a major shakeup in the stock market with a roller-coaster ride of ups and downs. We seem to be facing new challenges every day and undoubtedly we will see more in our future. We are all in this together. Therefore, we feel that this year’s conference, “Being Prepared to Meet Future Opportunities,” has a very timely message.

With the 2011 Conference, we will celebrate 20 years of delivering highly technical and informative sessions to the thermoforming industry. During this time, we have seen many friends come and go from the industry. However, over the past two decades, we have also seen our industry grow and expand into areas that were once considered almost impossible when we started.

The Board of the Thermoforming Division would like to thank each and every one of you who have attended over the years and who continue to provide your support. Our biggest thanks are reserved for our exhibitors. Their involvement and dedication have provided the foundation for innovative displays of machinery, tooling and materials as well as offering a deep well of technical information. They also play an important role in recruiting experts from various end markets to join us and share their specific knowledge. This exchange of ideas is what gives attendees new and cutting edge information in order to maintain and keep a competitive edge over other processes.

The 2011 conference will present a major change to the format. In order to provide more opportunity for communication, the layout will allow both the exhibitor and the attendee to have more exposure time on the floor. This will allow more events and technical sessions to be held in a single location. This efficiency will provide greater opportunities for you to network, meet customers and suppliers and still benefit from the technical sessions.

I would also like to extend a special thank you to our volunteer conference team. This team has spent many hours away from their families and businesses in order to make this event a success.

Just as a cool breeze is a pleasant change from the heat, we must look to the future for positive changes. We are navigating unusual economic storms that require us to tack and change course frequently. Do not lower your standards to gain work. We need each other for support to keep a strong industry. Remember that manufacturing is the backbone of our nation.

Thank you for your continued support and get the word out: “Do Thermoforming”!

If you would like to share your views or comments, please feel free to contact me. I would like to hear from you.

Ken@pcmwi.com
Why Join?

It has never been more important to be a member of your professional society than now, in the current climate of change and volatility in the plastics industry. Now, more than ever, the information you access and the personal networks you create can and will directly impact your future and your career.

Active membership in SPE – keeps you current, keeps you informed, and keeps you connected.

The question really isn’t “why join?” but …

Why Not?
Made in Wisconsin:
Vessel to contain cosmic force takes shape
By Terry Devitt, University of Wisconsin - Madison
July 20, 2011

At the heart of most celestial objects is a dynamo. The Earth’s dynamo, spun to life in the molten metal core of our planet, generates a magnetic field that helps us find north and, perhaps more critically, shields us from solar winds that would otherwise singe our planet.

Stars and other planets have dynamos, and so do galaxies and clusters of galaxies.

And soon, Wisconsin will have the closest thing this side of the solar system to a cosmic dynamo.

With support from the U.S. National Science Foundation (NSF) and the specialized talents of four Wisconsin companies, the finishing touches are now being put to a 3-meter diameter, hollow aluminum sphere designed to hold in a vacuum a dynamo-generating 200,000-degree Fahrenheit plasma.

The vessel now being constructed will be at the heart of a new University of Wisconsin-Madison laboratory and promises researchers their best opportunity to put cosmic dynamos under a microscope.

Until now, scientists, generations of whom have labored to tease out the secrets of cosmic dynamos, have been relegated to studying the phenomena from vast, usually astronomical distances.

“The project itself is to study how magnetic fields are generated in planets and stars,” explains Cary Forest, a UW-Madison professor of physics who will direct the effort formally known as the Madison Plasma Dynamo Experiment.

To do that, Forest and his colleagues required a specialized vessel to contain the types of high-temperature plasmas observed in space. Sometimes referred to as the fourth state of matter, plasmas are superheated gases where the atoms that make up the gas have been stripped of their electrons, leaving a conducting, highly electrified collection of atomic nuclei and free electrons.

After a nationwide search for a company to cast the hollow, thick-walled aluminum sphere that will contain the plasma at the core of the experiment, Forest’s team settled on Portage Casting & Mold (PCM), a company less than an hour from Madison. The company specializes in fabricating large cast and fully machined molds, patterns and core boxes for plastic companies and foundries nationally.

PCM, according to the company’s director of tooling Dan Griep, was excited to land the project, which was funded primarily through a $2.4 million grant awarded through NSF’s Major Research Instrumentation Program to build and operate the experiment.

“This relationship is more important than ever,” explains Griep. “There are a lot of funds flowing through the state of Wisconsin in these projects. If we can capture even half of the new UW business, it would have a huge impact on not only employment,
Using $2.4 million in stimulus funding from the National Science Foundation (NSF), the experiment is a continuation of research studying the origin of magnetic fields in the universe and exploring the self-generation of magnetic fields in a plasma dynamo as a potential energy source.

but enhance our ability to identify new business and understand where we should focus in the future to support programs that are cutting edge across the UW System."

The opportunity to participate in building the apparatus for the dynamo experiment, says Griep, will help the Wisconsin company compete nationally and internationally for similar projects simply through exposure.

“The foundry-tooling industry in Wisconsin is alive and well and we are definitely open for this business,” says Griep.

For the university, according to UW-Madison project engineer John Wallace, casting the plasma containment vessel and other work done in close proximity to Madison provides an opportunity for physics students to see first-hand how complex experimental equipment is fabricated, experience that will help them in future work. The aluminum sphere will be cast in halves and, after machining, will weigh in at about 10,000 pounds. Prior to final machining, the vessel will be subjected to an X-ray analysis by Lafayette Testing Services, a Milwaukee firm, to ensure that the cast sphere is free of voids.

The halves will then be shipped to D&S Machine Service in Luxemburg, Wisconsin, for sizing after which they will be returned to PCM for machining on large, five-axis milling machines capable of sculpting the sphere into its final form. When the machining process is finished, the sphere will be cleaned and tested for vacuum integrity at PCM’s test facility in Portage. When complete, the inside of the chamber will be coated with alumina, a ceramic material that can hold up to the high plasma temperatures. Two Wisconsin companies, says Forest, are bidding to perform that work.

“It is an enormous advantage to actually talk to the people making the object and to work with them when we are designing the experiments,” Forest says.

When the chamber is finished, it will be moved to a newly refurbished laboratory in Sterling Hall. The device is expected to be delivered in the fall and the first plasmas will be generated early in 2012, according to Wallace. The fact that the central, critical element of the Madison Plasma Dynamo Experiment could be built in Wisconsin is gratifying, says Forest.

“We are particularly proud of this aspect of the project,” he notes. “That, after a national search, we found we could do this in our backyard, with Wisconsin companies and local expertise, is exciting.”
PROSPECTIVE AUTHORS

Thermoforming Quarterly® is an “equal opportunity” publisher!
You will notice that we have several departments and feature articles. If you have a technical article or other articles you would like to submit, please send to Conor Carlin, Editor. Please send in .doc format.

All graphs and photos should be of sufficient size and contrast to provide a sharp printed image.
Steve Murrill
Owner/President
Profile Plastics, Inc.
Lake Bluff, IL

Stephen R. Murrill is owner and President of Profile Plastics, Inc. of Lake Bluff, IL. Profile Plastics is a heavy gauge thermoforming company specializing in vacuum, pressure and twin-sheet processes. Steve has a BSChE from Purdue University and an MBA from the University of Chicago. Prior to the purchase of Profile Plastics in 1987, Steve worked for Signode Corporation in Glenview, IL as a New Ventures Manager in the Business Development and Acquisitions Department. Prior to Signode, he held several positions at Exxon Chemical Co. USA, Houston, TX.

Steve was exposed to plastics at an early age. Steve’s father, Randy Murrill, worked at Dupont for 39 years. They lived in Orange, TX; Parkersburg, WV; and Wilmington, DE. Randy was involved making Teflon, Delrin, and Lucite which went into such products as fishing line, brushy fibers, and glazing.

In high school, Steve belonged to Junior Achievement and was president of a company called JASAP, which was sponsored by Marbon Chemical. Named the 1967 JA Company of the Year, the venture produced and sold a unique playing card holder and score card keeper.

Steve earned his BS ChE from Purdue University where he was the editor of the Purdue Engineer. During college he was a summer intern with Kodak and Exxon.

After receiving his degree, Steve went to work for Exxon spending time in Houston before moving to Chicago. He then went to work for Signode Corporation originally in their pallet division (plastic pallet strapping). Steve moved into Signode’s New Venture Group where he first learned about Profile Plastics.

In 1987, Steve purchased Profile Plastics from John Grundy. Profile Plastics was started in 1960 in a garage and grew to be one of the leaders in the industry, particularly with the development of pressure forming. Under Steve’s ownership and direction, Profile Plastics continues to be at the forefront of thermoforming in both technology and business operations. Steve has been a long-time proponent of molded-in color and texture and has led many of Profile’s customers away from injection molding or painted structural foam, especially for those products requiring large, highly cosmetic covers in low to medium volumes.

In 1995 Profile Plastics moved to a new 100,000 sq. ft. facility. In 2003 Steve bought the assets of cross-town competitor Arrem Plastics in Addison, IL and actively led the transition of hundreds of molds in the Lake Bluff facility. In 2008, Steve made another acquisition and purchased Pullman Industries of Rochester, NY, further expanding Profile’s customer base and sales volume. Twenty-four years since his purchase of Profile Plastics, Steve is still deeply involved in every facet of the business – even running the weekly production meetings. Currently using 13 state-of-the-art formers and 15 state-of-the-art 5- and 6-axis CNC routers and robots, Profile continues its record sales growth through Steve’s leadership.

He has been a member of SPE since 1976, served on the Thermoforming Division Board of Directors since 1987, and served as its Chairman for two years. He has been active in every annual SPE Thermoforming Conference since its inception and was the Chairman for the 1992 Thermoforming Conference held in Midland, MI. He has been a speaker, moderator and program chairman for the Thermoforming Conference and many other SPE Conferences and RETECs held by other Divisions and Sections. He received the “Lifetime Achievement Award” from the Thermoforming Division in 2001.

Steve holds strongly to the late John Griep’s vision that if the thermoforming industry to grow, it must have a vehicle for the free discourse for those who work in the business. To that end, he has put much of his energy into the SPE Thermoforming Division. People who have met Steve will attest to his openness in discussing what many consider to be the “secrets” of our business. It is that willingness to share knowledge which has helped us all to grow thermoforming into the dynamic plastic process that it is today.
Many thermoformers have been asked, “What advantage is there in comparing thermoforming to injection molding for my parts requirements?” If the immediate answer is, “Our molds are cheaper and quicker to build,” the respondent has missed an opportunity to extol the benefits of our process.

In this article, I am going to document ten advantages and four disadvantages of thermoforming when compared to injection molding. All four disadvantages relate to part costs. I will also examine two cases of heavy gage parts development where thermoforming was preferred to injection molding.

Advantages

1. **Better physical properties in finished parts**

Let us begin by taking one of the most important and often overlooked advantages of thermoforming: residual stress in the part. When you next take a commercial flight, check your empty, clear plastic cup. If you squeeze the cup and it immediately splits, you can bet there will be an injection port stub on the bottom center. If you squeeze the cup and it collapses without breaking, and then allows you to push it back to original shape, it is thermoformed.

The difference here is the high residual stress of the injection molded part which greatly reduces the impact strength of the finished product. This is especially true in heavy gage forming. Before forming, the heated sheet is virtually stress-free. When properly formed, the sheet is almost completely stretched at the forming temperature before it is shaped and cooled against the mold. This sets up a minimum of internal stress in the finished part. Additionally, the starting resin for extrusion and blow molding will be of a lower, more viscous melt flow which generally has better physical properties than the higher melt flow (melt index) resin required by the injection molding process.

In injection molding, the melted material must flow rapidly through very restrictive mold entries and between close-set mold walls. Injection molding requires that the molten material flowing into and through the mold cavities be slowed down. The material cools faster where the material is in contact with the mold wall and slower in the center of the material flow. Thus, within a molded wall the material has been cooling and setting at various rates, setting up high internal stress.

2. **Relatively low mold costs**

Because most thermoforming is accomplished with a single surface mold, it stands to reason that the molds will be less expensive than injection molds. However, the differences in pressure requirements also contribute to lower thermoforming mold costs. Injection molds require fine steel materials for long use, with low mold wear. The best material for thermoforming is aluminum, cast or machined from block or plate. This creates a great difference in material cost as well as lower machining. The thermoforming process creates no abrasion to the mold surface so the aluminum mold works well for millions of parts.

3. **Lower cost machinery**

Generally speaking, thermoforming machines are less expensive than injection molding machines. This allows more thermoforming production with lower machinery amortization which helps thermoforming to hold down costs and be more competitive.

4. **Thermoforming allows production of very large parts**

In today’s thermoforming factories it is not uncommon to see very large parts in high volume production. Parts measuring up to 14’ wide and 22’ long are possible in many plants in the USA. This is not even conceivable for injection molding machines.

5. **Multiple layer sheet material**

The co-extrusion process allows many layers of various materials to be produced for thermoforming, both continuous thin- and heavy-gage sheet forming. Nine to 11 layers of material are not uncommon today.

6. **Pre-decoration of sheet**

There is a vibrant packaging business today where pre-printed rolled material is used in continuous or roll-fed thermoforming. Pre-printed
sheet is also used with normal patterns and with distortion printing for registration forming. Extrusion can also laminate top layers of wood grain, marble, and many other designs to be thermoformed with no further decorating of the parts required.

7. *Thin walled parts of various sizes*

Small packaging parts of less than .015” are thermoformed by the millions in mold set-ups of 150 to 200 parts per shot. Many larger parts such as cake covers are larger, deep draws from thin materials.

8. *Thermoforming foam sheet*

Foam sheet, from thin to heavy gage, is readily thermoformed. Products such as egg cartons and other food packaging, auto side panels, athletic pads, shoe sections, and industrial packaging are all in production using the thermoforming process.

9. *High strength reinforced composites*

Sheet thermoplastics with continuous fibers or rovings of graphite, glass, and carbon are being thermoformed today in North America and Europe. Processors are using matched aluminum molds on modern pressure forming machines and/or high pressure presses.

10. *Pressure forming*

High pressure thermoforming (30 to 130 psi) of thermoplastic sheets produces high quality parts with great detail on one surface. These parts have the high-resolution appearance of injection molded parts with much better quality in molded size control and physical properties.

Disadvantages

1. *Cost of sheet production*

Most competing processes start with resin in pellet form, and go straight to the molding of the finished part. Thermoforming must start with sheet or film. Consequently, the expense of producing the sheet or film has to be added to the price.

2. *Trimming material*

There is no way to thermoform parts without clamping the sheet outside of the mold and part area. Therefore, the material in the clamping area and where any apertures are required, must be trimmed away after forming leaving a part that uses only a portion of the required sheet weight. That trimmed scrap material must go into the part cost. Scrap can vary from 15% to 60% of the original sheet.

3. *Trimming labor*

Labor to trim the scrap and apertures from the formed part adds cost to the part.

4. *Reverse side details*

Because thermoforming is usually done with a single sided mold, any details required (standoffs, stiffeners, ribs, etc.) on the reverse side must be added. This additional labor increases the part cost.

Case Study 1

The front and rear fascias (bumper covers) on all new automobiles are injection molded because of lower parts cost, despite the high cost of the mold ($1-1.5MM per mold). In 1999, The Renault Automobile Company of France planned to begin assembly of some new models, in South America. However, there was limited production (9,000 per year) planned which made amortization of the molds prohibitively expensive. Because of the shape the parts could not be shipped from Europe at an acceptable cost. The parts were required to have no visible mold marks, accurate size, and a very uniform wall thickness.

Renault approached a company, well-established in thermoforming parts for the South American automobile assembly plants, and inquired about the possibility of thermoforming the fascias.

The company, Thermoform Ltd., was a long-time client of the author. They asked if it was possible to thermoform the fascia considering very large undercuts at each end. After a study of drawings and photos of the required part, I determined that it could be done. I did a basic mold design and obtained a budgetary quote of mold costs, specified the TPO material, sheet size, thickness and approximate forming and trimming time for each part. The thermoformer quoted the budgetary mold and parts costs and received a contract to prototype and prove the viability of thermoforming as an acceptable manufacturing process.

In their Bogota, Colombia plant, we built a prototype mold with moving ends to facilitate part removal from the undercuts. Remarkably good prototype parts were delivered to Renault for approval. In the final proposal, based on what we learned in the prototyping stage, Thermoform Ltd. stated that the physical properties of the production parts would exceed those of the injection molded parts being used in Europe. Renault issued a contract for mold and production parts.

The mold design was finalized and was built at Borke Mold Specialists in Hamilton, Ohio. Upon mold completion, the first parts were formed there and delivered to Renault to be shipped to their technical center in Paris for final evaluation and approval.
One of the most rewarding elements of this experience, in my opinion, was reading the approval report from Renault which stated, “Although we do not understand why, these parts have demonstrably better physical properties than our standard parts.” The success of the thermoforming process has led to additional fascia production for other auto manufacturers (including GM) in South America.

One such part won the “Best Automotive Part” award at the 2002 SPE Thermoforming Conference.

Case Study 2

I am sure that almost everyone reading this article is familiar with a famous TV advertisement run by a popular luggage manufacturer where apes are bouncing hard-sided luggage off the stone walls of a zoo compound, exhibiting the durability of the product.

A major competitor to this luggage manufacturer made a decision to use high pressure thermoforming of ABS to create a top tier line of hard side luggage. The decision was based on the higher impact strength and other physical properties of the product when thermoformed, despite the higher costs when compared to injection molding.

The molds were built by Portage Casting and Mold in Portage, Wisconsin and consisted of two halves, each undercut around the entire perimeter, fully textured, and temperature controlled. The parts met all customer requirements and went into a long and successful production.
Need help with your technical school or college expenses?

If you or someone you know is working towards a career in the plastic industry, let the SPE Thermoforming Division help support those education goals.

Within this past year alone, our organization has awarded multiple scholarships! Get involved and take advantage of available support from your plastic industry!

Here is a partial list of schools and colleges whose students have benefited from the Thermoforming Division Scholarship Program:

- UMASS Lowell
- San Jose State
- Pittsburg State
- Penn State Erie
- University of Wisconsin
- Michigan State
- Ferris State
- Madison Technical College
- Clemson University
- Illinois State
- Penn College

Start by completing the application forms at www.thermoformingdivision.com or at www.4spe.com.
A new test has been developed that may change the way in which extruded sheet is evaluated and graded before shipping to thermoformers. Generally a high percentage of the problems thermoformers encounters are somehow sheet related. (1) Specific causes of the problems have been difficult for them to pinpoint since the general practice is to tweak the processing parameters in an effort to make the sheet run. If tweaking fails, as a last resort the sheet supplier is consulted. The sheet supplier will make amends by replacing the shipment if they conclude that it is indeed a sheet problem. This process is costly and time consuming. In the end, a significant amount of manufacturing time, material and – most importantly – money (in the form of costs) has been lost. Unfortunately, this is the state-of-the-art in the industry. This is true for both heavy gauge and roll fed operations.

The thermoformability index is measure of how sheet behaves in the oven and how well the sheet thermoforms. What it actually measures is the flow of the sheet (simulating sag in the oven) and resistance to sag or “hot strength” (elastic property). These properties are directly related to the material’s molecular attributes up and are indicative of behavior in the process. The test is run on a commercial instrument called a rheometer. The sample is a 1 inch (25mm) disk cut or punched from the sheet. The disk can be punched from a location that does not interfere with forming. Tests are conducted at speeds, forces and temperatures simulating thermoforming. It takes less than 30 minutes to run a test. This technology was first introduced at ANTEC 1991(2) and explained at ANTEC 1998.(3)

The thermoformability index, like the melt index, measures material characteristics that are related to processing behavior and molecular characteristics. The melt index is used to classify materials and can indicate how well it will extrude into sheet. The concern is that the melt index listed on data and on spec sheets is based on pellets before sheet production and is not an accurate indicator of forming behavior. The formability index has been shown through actual case histories that it can do for sheet what the melt index does for pellets.

What is the Thermoformability Index?

This test uses a science called Rheology. Rheology is the study of how materials flow. Since the thermoforming operation causes materials to flow when sagging in the oven and when the material conforms to the mold to make the final part, it makes sense that a Rheology test can be used to evaluate materials in the process.

Simplistically, the TFI is a measure of the viscoelastic properties of a material under stress, time and temperature conditions experienced in thermoforming.(4) Plastics have dual properties, viscous and elastic (viscoelasticity). These properties exist no matter the state of the material. Depending on the temperature and speed of the process one property can become dominate. In thermoforming an ideal balance of the two properties are necessary. That is, the material needs a viscous component to facilitate flow and an elastic component for self-support. These properties are directly related to the material’s make-up and are indicators of behavior in the process. The test is run on a commercial instrument called a rheometer. Tests are conducted at speeds,
forces and temperatures simulating thermoforming. The force (stress) simulating gravity is applied the heated sheet sample for at least 10 seconds. During this time the sample flows or creeps. This is viscous flow. From the speed of the flow component one can calculate a viscosity.

After 10 seconds the force is instantly relieved to zero and held at zero for 30 seconds. During this period the sample will spring back and recover. This is the elastic component. The amount of “spring-back” is used to calculate a quantity called recoverable compliance. The compliance coupled with the viscosity yields a relaxation time. This relaxation time is the TFI. Figure 1 is a graphical illustration of the data. The first portion of the curve represents the creep or flow portion of the curve. The y-axis is strain or the extent the material flows while under stress. The second portion represents the period when the sample is under zero stress. As you can see the strain reduces with time. This is the recoverable portion of the curve. The calculations are as follows:

1) Viscosity = stress/slope of the strain curve (Pascal-Seconds)
2) Recoverable compliance = extent of the strain recovery/stress (1/Pascals)
3) TFI = viscosity x recoverable compliance (Seconds)

Typically good thermoforming materials such as forming grades of ABS, Acrylic and Polystyrene will have forming index numbers greater than 20 seconds. TFI values between 10 and 20 will thermoform but require tighter controls on material and processing conditions as the material is not as forgiving the lower the TFI becomes. Polyolefin materials such as Polypropylene and TPO may have values less than 10. In this case the material requires precise temperature and processing conditions as the forming window is very narrow. Table 1 is a comparison of the TFI for ABS, a profile extrusion grade ABS and a forming grade of TPO.

<table>
<thead>
<tr>
<th>Material</th>
<th>TFI (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forming Grade ABS</td>
<td>23.7</td>
</tr>
<tr>
<td>Pipe Extrusion Grade ABS</td>
<td>15.06</td>
</tr>
<tr>
<td>Forming Grade TPO</td>
<td>9.12</td>
</tr>
</tbody>
</table>

The TFI is useful for troubleshooting production issues:

A sheet extruder shipped two lots of ABS sheet to a thermoforming customer. Both lots met all of the specifications applied to each shipment. The process was lined out and was running well with Lot number 1. When Lot number 2 was placed in the process, forming difficulties were experienced immediately. Rather than tweak the processing conditions the customer replaced lot 2 with remnants from lot 1. The forming problems disappeared indicating it was exclusively a sheet issue. The extruder had to return the lot and replace it with another shipment that it hoped would resolve the problem.

In an effort to prevent the problem from reoccurring, the extruder submitted samples to our laboratory at Clark Atlanta University for evaluation. TFI tests confirmed that the two lots were different and that they should behave differently in the process. Table 2 shows the TFI values for the two lots.

<table>
<thead>
<tr>
<th>Sample</th>
<th>TFI (s)</th>
<th>Processing Behavior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lot 1</td>
<td>17.410</td>
<td>Good</td>
</tr>
<tr>
<td>Lot 2</td>
<td>14.785</td>
<td>Excessive Sag – Freeze lines</td>
</tr>
</tbody>
</table>

The sheet supplier was able to determine the cause of the differences in the lots and is now capable of producing sheet with consistent TFI values using TFI prior to shipping.

TFI is Useful for Grade Development and Competitive Analysis:

It is a common practice in industry to have more than one source for a raw material. In this case, two grades of TPO were submitted to a thermoformer for evaluation in a transportation application. Data sheets from the two grades indicated that there were no apparent differences in the grades and they should perform similarly. However,
a subsequent trial run showed that the two grades thermoformed differently. The grades evaluated for their TFI at Clark Atlanta University were found to have different TFI values. Grade A had a TFI of 9.12 while Grade B had a TFI of 8.66. The forming behavior of the two was consistent with their respective TFI's.

In this case, use of the TFI could have prevented the use of thousands of pounds of material, extrusion and thermoforming time. Data sheets usually show information from injection molded specimen and pellets before sheet production. There normally is not any relevant information on the data sheet that directly relates to thermoforming. For accuracy and usefulness the data sheet should reflect sheet physical and processing properties including TFI.

TFI and QA/QC:

Perhaps the most significant use for TFI is in Quality Control. The TFI test is a linear viscoelastic test. This means that the fundamental laws such as Newton’s Law of viscosity and Hooke’s Law for elasticity are obeyed:

1) Newton’s Law - Viscosity = stress/strain rate
2) Hooke’s Law - Modulus = stress/strain
3) Compliance = 1/modulus

As a result, the data is directly related to material attributes. The TFI is very sensitive to variations in material properties. It is a measure of the influence of molecular weight, molecular weight distribution, regrind, blend components and blend ratios on the forming behavior of materials. This is extremely important for maintaining consistency in manufacturing. Table 4 lists the TFI for a typical production run illustrating the influence of processing conditions on TFI.

<table>
<thead>
<tr>
<th>Processing Conditions</th>
<th>TFI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pellets Before Processing</td>
<td>15.43</td>
</tr>
<tr>
<td>420 F melt</td>
<td>14.98</td>
</tr>
<tr>
<td>480 F melt</td>
<td>14.26</td>
</tr>
</tbody>
</table>

Reproducibility is extremely important for any Quality Control test. The TFI, because it obeys fundamental laws, is a highly reproducible test. For example 16 tests were conducted on a single sample. The average value was 15.06 with a standard deviation of +/- 0.5006 (3.3%).

Summary

A new test, the Thermoformability Index, has been developed that can effectively evaluate the thermoforming characteristics of sheet before it is shipped to the thermoformer. This represents opportunities for significant cost savings for sheet extruders and thermoformers. Below is a list of the advantages and uses of thermoformability index from actual cases.

1. Screening of thermoforming grades without the necessity of costly production trials
2. Distinguishes the differences between sheet that form differently in the process
3. Distinguishes lot-to-lot variation in sheet production
4. Shows why sheet from different vendors formed differently
5. Shows the influence of regrind on forming behavior
6. Shows the influence of heat histories on forming behavior
7. Shows the influence of blend components on forming behavior
8. It is easily adaptable as a quality control tool for sheet extrusion operation (TFI is currently in use as a QC tool)
9. Replaces lengthy and expensive thermoforming trials saving thousands of pounds of sheet
10. The test can be run on sheet without destroying the sheet.

References

Control Your Destiny

BROWN IS INNOVATION

Control over product
The Quad Series™ provides greater control over your finished product by combining high-tonnage stamping (coining) force with high-tonnage holding force, and without plate deflection. This powerful combination produces uniform material distribution, ensuring better part consistency at higher speeds. It all adds up to producing quality parts faster, with less scrap.

Quad Series™

The Brown Quad Series high-tonnage power and user-friendly operation provides process engineers more control over the thermoforming process and their finished products than ever before.

Control over process
All machine control functions and diagnostics are easily managed at the HMI level. An Allen-Bradley open and integrated architecture control system with user-friendly HMI and Logix 5000 single program solution. This combination optimizes and synchronizes the functions of logic, motion, and oven control. The system is fully supported worldwide by both Brown and Allen Bradley.

Find out more at www.brown-machine.com or call 989.435.7741
Optimization of molding conditions of plug-assisted thermoformed thin containers in a high speed and volume production context

Michel Labonte and Charles Dubois, CREPEC, Ecole Polytechnique de Montreal, Montreal, Quebec, Canada

Abstract

For an industrial thermoformer, thermoforming plastic thin containers using a plug involved technological knowledge on material behavior, plug material and process variables. Technical papers on the subject exist and are well documented but not with reference to the optimization of process conditions on high speed and high volume lines. Design of Experiments (DOE) approach like the Taguchi method can be used to refine the process and to minimize rejects. In this paper, a case study on thermoforming of PET single use containers on a high output industrial machine using a single criteria based on the Taguchi method for the optimization of wall thickness distribution is discussed.

Introduction

Thermoforming studies have been conducted on different aspects of the process. Modelization simulators of the process have been developed over the years. Process conditions and plug materials in plug-assist thermoforming have been investigated [1, 2]. Dynamic characteristics of the plug using rheological model has been developed for understanding the effect of descent speed and pressure from the plug [3]. Although some studies have modeled infrared sheet-roll heating [4], none have investigated the process with regard to the period (less than 10 s) and with transparent materials. Furthermore little considerations have been given to the effect on the process of different types of heaters and the variety of heaters configurations. Considering that the typical thermoforming of single-use thin containers is done using multi-cavities molds for high outputs and cadences of less than three seconds (with or without a plug-assisted system). The Taguchi approach becomes highly relevant under these conditions because it can be used to optimize the quality of containers by fine tuning its thermoforming process through the production equipment.

This paper will present a case study of thermoforming PET single use containers with a high output industrial machine using single criteria method based on the Taguchi approach for the optimization of wall thickness distribution.

The Taguchi method

Taguchi method is a design of experiments (DOE) method. It is designed to optimize a single characteristic to yield a set of process parameters. It has been applied to many plastics processes and products [5-7] but has never been exploited to the thermoforming transparent of thin containers at high production cadence.

Times, pressures or vacuum, temperatures, speeds and displacements are the process variables of interest. Some variables have more importance than others and some show important interdependence with others. A deep understanding of the process is essential prior to conducting the experiments in order to obtain robust results.

Originally, Genichi Taguchi presented the method for quality control purposes. It was intended to minimize the loss factor due to non-quality in products. He considered that any deviation from a nominal value target result in a lowering of quality of the product and a loss not only for the manufacturer but also for the society. Taguchi approximated the loss by a quadratic function and noise factors in the process, between products and from external variables. This method provides a robust combination of process variables and identifies precisely the variables that need to be closely monitored for an optimum quality and minimum deviation from target values.

There are three distinct steps in the method: preparation of the trials, realization of the trials and analysis of results. In the preparation, the characteristic (response) to be analyzed is specified. Through group discussions, the most important process variables are identified and fixed levels are determined. Then appropriate orthogonal array table is chosen and using linear or triangular graphs, variables are assigned to the right columns for the determined interactions between variables. According to the table chosen and with appropriate combination of process variables, the trials are run and results for the targeted characteristic (response) are compiled off line. Finally, results are analyzed using adapted averages calculations, classical variance analysis and signal over noise (S/N) ratios. The use of graphics

1 Identified as “loss function” in Taguchi’s literature
2 Borrowed from the acoustic field, Signal/Noise (S/N) ratio in db
enables a better comprehension of results. Variables are analyzed with regard to sensibility to variation or drift. An optimal combination of different variables at the appropriate level is obtained. A final trial is run using this optimal combination for validation.

The process variables for the containers

In this case, the equipment used is a continuous thermoforming machine having a combined molding and cutting area with a maximum of 48 cm X 36 cm and an oven of approximately 1.5 meters in length. The 500 ml (16 oz) container is made from roll stock of αPET 530 µm (21 mils) thick, including a thin barrier and a PE layer for heat sealing for an additional 50 µm (2 mils). Two aluminum molds of six cavities are mounted on the machine with swinging arms. Cavities are organized as three in a row, two rows in each mold and all cavities are numbered. Molding is plug-assisted: six plugs are used simultaneously. High speed robotic stackers complete the machine. Hourly production output is more than 15 000 containers.

The main quality specifications (response) are minimum wall thickness: bottom (355 µm), sides (255 µm) and corners (225 µm).

After discussions as well as previous evaluations, it was decided that the optimization study would consider the effect of four important process variables on quality specifications. Each variable will be tested at three different levels. Selected variables and levels are listed in Table 1:

<table>
<thead>
<tr>
<th>Process variables</th>
<th>Letter</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oven temperature (°C)</td>
<td>A</td>
<td>L1 565</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L2 555</td>
</tr>
<tr>
<td></td>
<td></td>
<td>L3 570</td>
</tr>
<tr>
<td>Forming time (s)</td>
<td>B</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.8</td>
</tr>
<tr>
<td>Plug lowering time (s)</td>
<td>C</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.16</td>
</tr>
<tr>
<td>Plug lowering speed (-)</td>
<td>D</td>
<td>Med</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fast</td>
</tr>
</tbody>
</table>

Note: Heating time of the sheet is approximately 3.25 X the cycle time according to the oven’s length and the incremental advance of the sheet at each cycle.

Table 2: Orthogonal array table L9 (3^4) for combination of variables and levels.

<table>
<thead>
<tr>
<th>Trial no.</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
<td>L1</td>
</tr>
<tr>
<td>2</td>
<td>L1</td>
<td>L2</td>
<td>L2</td>
<td>L2</td>
</tr>
<tr>
<td>3</td>
<td>L1</td>
<td>L3</td>
<td>L3</td>
<td>L3</td>
</tr>
<tr>
<td>4</td>
<td>L2</td>
<td>L1</td>
<td>L2</td>
<td>L3</td>
</tr>
<tr>
<td>5</td>
<td>L2</td>
<td>L2</td>
<td>L3</td>
<td>L1</td>
</tr>
<tr>
<td>6</td>
<td>L2</td>
<td>L3</td>
<td>L1</td>
<td>L2</td>
</tr>
<tr>
<td>7</td>
<td>L3</td>
<td>L1</td>
<td>L3</td>
<td>L2</td>
</tr>
<tr>
<td>8</td>
<td>L3</td>
<td>L2</td>
<td>L1</td>
<td>L3</td>
</tr>
<tr>
<td>9</td>
<td>L3</td>
<td>L3</td>
<td>L2</td>
<td>L1</td>
</tr>
</tbody>
</table>

The results for a single characteristic: the bottom thickness

The results for average bottom thickness are compiled as follow:

\[A_i = \frac{\sum_{n=1}^{48} y_{ij}}{3n} \]

\[A1 = \frac{[\sum y_{11} + \sum y_{12} + \sum y_{13}]}{3n} \]

\[A1 = \frac{[315 + 320 + \ldots + 305]}{3 \times 48} = 400 \mu m \]

Where \(n \) is sample size (4 containers x 12 cavities), \(y \) is the thickness, \(i \) is for the result \(y \) where variable at level 1, 2 or 3 and \(j \) is the trial number (1 to 9) as per orthogonal array table (see Table 2).
NORTH AMERICA’S LEADING THERMOFORMING MACHINE BUILDER

9 MODELS OF THERMOFORMERS

INDUSTRY’S LARGEST THERMOFORMER -
A MAXIMUM 65” X 67” MOLD

7 MODELS OF THE VERTICAL & HORIZONTAL TRIM PRESS

• Innovative, Quality Engineering
• Superior Technology Results in Unequaled Performance
• Industry’s Top Service and Support Team

THERMOFORMING MACHINERY – PLASTICS PROCESS TECHNOLOGY
FORMING CUSTOMER PROFITS
Union Gap, Washington • 509.454.4578 • www.tslusa.biz

18 THERMOFORMING QUARTERLY
20th Annual Thermoforming Conference
September 17-20, 2011

Welcome Back to Chicago!

Renaissance Hotel
Schaumburg, IL
(20 minutes from O’Hare Airport.)

For Reservations: 1.800.468.3571 or 847.303.4100
Request SPE Room Rate of $159.00

Chairman
James Alongi
MAAC Machinery
630.665.1700
jalongi@maacmachinery.com

Heavy Gauge Technical Chairman
Jay Waddell
Plastic Concepts & Innovations
843.971.7833
jwaddell@plasticconcepts.com

Conference Coordinator
Gwen S. Mathis
706.235.9288
gmathis224@aol.com

Roll Fed Technical Chairman
Mark Strachan
Global Thermoform Training, Inc.
754.224.7513
mark@global-tti.com

Technical Chairman
Paul Alongi
MAAC Machinery
630.665.1700
paul@maacsales.com

Parts Competition Chairman
Bret Joslyn
Joslyn Manufacturing
330.467.8111
bret@joslyn-mfg.com

Registration and Exhibitor sign up information is available on our website (www.thermoformingdivision.com)
Check out our plant tours and sign up early to assure yourself an opportunity to be on the limited visitor list.
\[C_i = \left(\sum_{n=1}^{48} y_{ij} \right) / 3n \quad (2) \]

\[C_3 = \left[\sum y_{33} + \sum y_{35} + \sum y_{37} \right] / 3n \quad (2a) \]

\[C_3 = \left[220 + 225 + \ldots + 305 \right] / (3 \times 48) \]

\[= 395 \mu m \quad (2b) \]

The maximization of the bottom thickness (assuming corners and sides thickness are adequate) is the focus of this optimization process using the Taguchi method.

Results from equations (1) and (2) are shown in Figure 2. Based on the <maximum is the better>, the optimum combination of variables is A1B3C2D3. This combination overcomes the requested specifications of 355 \(\mu m \) minimum. Oven temperature (A) and forming time (B) seems to be not sensitive for this thickness variation probably due to the short time of the heat cycle (approximately 10 sec) of the sheet’s portion to be thermoformed into containers. Plug lowering speed (D) and plug lowering time (C) seem more sensitive to variation. In fact, they are the critical variables in plug actions. The plug stretches the plastic sheet to disperse more uniformly the thickness and push the material to the bottom just before being vacuumed. But this push of material to the bottom negatively affects the distribution of material to the sides and the corners.

In this compilation, the signal to noise ratio (S/N) is the value of the response signal over the variation of the signal due to noise [8, 9]. Maximization of the ratio brings minimum noise to the target characteristic. The S/N ratio derived from the loss function of <maximum is the best> can be used in this analysis. Usually, analysis of signal over noise ratios allows evaluation of variability of response within a trial, i.e. factors combination.

\[[S/N] = -10 \log_{10} \left[\frac{1}{r} \sum_{j=1}^{r} \frac{1}{y_{ij}^2} \right] \quad (3) \]

Where \(y_{ij}^2 \) is the squared measured bottom thickness for each measurement, \(i \) is for the result \(y \) where variable at level 1, 2 or 3 in each trial, \(j \) is the trial number and \(r \) is number of repetitions of measurement, i.e. 4 X 12 molds.

Results from equations (3) are shown in Table 3 and in Figure 3. Note that results for S / N ratios look similar to the wall thickness. In fact, only a linear change of scale is brought by the equation (3) used in the <maximum is the best> situation. If situations like <nominal is best>, <signed target> or <smaller is better> were selected, results outcomes would have been different due to the different equation used.

Table 3: Average thickness and S/N ratio obtained on trial for bottom measurements.

<table>
<thead>
<tr>
<th>Trial No.</th>
<th>Bottom Thickness (µm)</th>
<th>S/N (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>400</td>
<td>C1</td>
</tr>
<tr>
<td>A2</td>
<td>395</td>
<td>23.84</td>
</tr>
<tr>
<td>A3</td>
<td>390</td>
<td>C3</td>
</tr>
<tr>
<td>B1</td>
<td>390</td>
<td>D1</td>
</tr>
<tr>
<td>B2</td>
<td>385</td>
<td>D2</td>
</tr>
<tr>
<td>B3</td>
<td>410</td>
<td>D3</td>
</tr>
</tbody>
</table>

Note: bottom thickness measured in mils and rounded for µm equivalents. (1 mil = 0.001 inch = 25.4 µm)

Figure 3: Results for S / N ratios for the bottom thickness.

Significant variables

In the Taguchi method, a standard analysis of variance (ANOVA) is also performed. It is either performed on the actual values or on the S / N ratios. In this case, it was done on the actual values for more significance of the results as per Figure 2. Results of the ANOVA are in Table 4. The variance ratio as noted by \(F \) is the ratio of the variance due to the variable and the variance of residual error. The variance is the relationship between sum of squares and the degree of freedom.
The larger the F value is, the more important is the effect of this variable. Values of the F factor are tabulated in Table 4.

Based on results from Table 4, the relative significance of each variable is in order: the plug lowering speed (D) at $F = 7.25$, the plug lowering time (C) at $F = 2.93$ and with much less significance the forming time (B) at $F = 0.16$ and the oven temperature (A) at $F = 0.06$. For the variables chosen in this study, the plug speed down was found to be the most significant. Results also show that the faster the plug lowering speed ($D3$) is the more important bottom thickness becomes. The faster the plug goes lower then less time is required to stretch the plastic film thus limiting slip on the plug. Almost a linear function of the phenomena is observed between $D1$, $D2$ and $D3$ as per Figure 2. Unfortunately, this variable is controlled on the equipment by the aid of a pneumatic flow valve with full opening in 10 turns. Given the specifications of major pneumatic flow valves, it makes it difficult to carefully control opening and therefore the air flow to the piston for lowering plugs. Pneumatic servo valves are not as available as hydraulic ones.

<table>
<thead>
<tr>
<th>Variable</th>
<th>DOF</th>
<th>Sum of squares</th>
<th>Variance</th>
<th>F</th>
<th>rho %</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
<td>5.30</td>
<td>2.66</td>
<td>0.08</td>
<td>0.32</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>11.53</td>
<td>5.77</td>
<td>0.16</td>
<td>0.69</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>205.45</td>
<td>102.67</td>
<td>2.93</td>
<td>12.24</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>508.61</td>
<td>254.31</td>
<td>7.25</td>
<td>30.30</td>
</tr>
<tr>
<td>Error</td>
<td>27</td>
<td>946.87</td>
<td>35.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>35</td>
<td>1667.72</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: ANOVA table for the multiple results from bottom wall thickness.

The second most relevant variable is the time the plug is in the lower position (C) prior to activation of the vacuum. Variations in the test are quite low from 0.6 s to 0.16 s, but it appears that the optimum is the lowest ($C2$).

The forming time (B) varies from 0.5 s to 0.8 s with a slight effect on the thickness distribution. The optimum seems to be at 0.8 s ($B3$). Finally the oven temperature (A) shows almost no effect on the thickness distribution, although the optimum seems to be the lowest value ($A1$). The optimum combination of variables for the <maximum is the better> is $A1B3C2D3$ based on the maximum bottom wall thickness; minimum specification to be at 355 µm.

The results for other characteristics: the sides and corners thickness

Although the Taguchi method is based on the optimization of only one specification or characteristic at the time, similar thickness evaluations were done for the sides and for corners of the containers. Based on <maximum is the better>, optimum combination for the sides is $A3B2C1D2$ and optimum combination for corners is $A2B3C2D3$. Results are shown on the Figure 4 and Figure 5.

![Figure 4: Results for average wall thickness at the sides of the container.](image)

![Figure 5: Results for average wall thickness at the corners of the container.](image)

The optimum combination obtained for the bottom thickness, i.e. $A1B3C2D3$ seems to meet the requirements for sides and corners except for the condition $D3$ which miss the minimum thickness target of sides by approximately 5 µm.

Conclusions

A Taguchi method was used to refine a plug-assisted and high speed thermoforming operation and define the optimum combination of process variables for the product of interest. This method is a simple and efficient approach that can be performed on an industrial production site if needed. It required short production times, less than 90 minutes in this case, and yields a satisfactory quality process. The experiment must be well prepared. In fact, much more time is required in the planning process and in the analysis of results than in the “test itself”. A well prepared test will bring relevant and useful results for technical and economic production.

(continued on next page)
Unfortunately, the Taguchi method is limited to the optimization of only one characteristic at the time. It is the Achilles' heel of the method but additional works are presently being carried out. Studies are currently investigating multi characteristics and others effects like the side and the sagging effects of high speed thermoforming of single use containers. The concept of utility, issued from economic sciences and sometimes used in sciences, will also be used in these studies to give them the appropriate weight to each of these characteristics and effects.

Acknowledgements

The authors wish to thank Cascades Inopak, a division of Cascades Canada Inc for their important collaboration to this project.

References

Key words

Thermoforming, plug-assisted, design of experiments, Taguchi method, process optimization, wall thickness distribution.
From the Editor

If you are an educator, student or advisor in a college or university with a plastics program, we want to hear from you! The SPE Thermoforming Division has a long and rich tradition of working with academic partners. From scholarships and grants to workforce development programs, the division seeks to promote a stronger bond between industry and academia. Thermoforming Quarterly is proud to publish news and stories related to the science and business of thermoforming:

- New materials development
- New applications
- Innovative technologies
- Industry partnerships
- New or expanding laboratory facilities
- Endowments

We are also interested in hearing from our members and colleagues around the world. If your school or institution has an international partner, please invite them to submit relevant content. We publish press releases, student essays, photos and technical papers. If you would like to arrange an interview, please contact Ken Griep, Academic Programs, at: ken@pcmwi.com or 608.742.7137
Thermal Radiant Absorption in Thin Semi-Transparent Plastics

By Jim Throne, Dunedin, FL

Abstract

Infrared absorption characteristics of three thin semi-transparent plastics are examined, using their Fourier Transform Infrared scans. Their heating characteristics are analyzed using the transient one-dimensional lumped parameter mathematical model.

Introduction

Thermoforming is the process by which shaped parts are made by heating and stretching plastic sheet. Thin plastic sheet, being sheet 0.060 inch or 1.5 mm in thickness or less, is usually heated with radiant energy. Transparency is required for many thin-gauge parts such as rigid packaging. As noted below, most packaging plastics are semi-transparent, meaning they appear transparent in the visible wavelength range of 0.4 μm to 0.7 μm, but are semi-transparent in the far infrared region where radiant heating occurs. “Semi-Transparent” implies that, in addition to the sheet absorbing a portion of the inbound radiant energy, a portion of the energy is reflected from the sheet surface, and a portion is transmitted completely through the sheet.

In this note, the effect of plastic sheet material characteristics on the extent of radiant energy absorbed by the sheet is examined.

Radiation Concepts

Radiation input to a substance is usually written as the sum of three characteristics – absorptivity, α, being the amount of energy that is absorbed by the substance, transmissivity, τ, being the amount of energy that passes completely through the substance, and reflectivity, ρ, being the amount of energy that is reflected back toward the radiant source.

$T = 1 - \alpha + \rho + \tau$

Where the subscript T means the total amount of energy. Symbols without the subscript mean the local values of energy.

For a radiopaque plastic, transmissivity is zero [$\tau = 0$]. Reflectivity, ρ, is given in terms of the index of refraction of the substance, as:

$\rho = \frac{\left[\frac{n_1-n_2}{n_1+n_2}\right]^2}{n_1^2+n_2^2}$

Where n_1 is the index of refraction of the medium through which the radiant energy is passing and n_2 is the index of refraction of the substance. For common glass in air, $n_1 = 1$ and $n_2 = 1.5$. Thus about 4% of light is reflected, or $\rho \approx 0.04$.

The nature of the reflected energy in a radiopaque plastic only depends on the specularity of the surface of the plastic. In this note, specularity will not be considered as a technical issue.

The mathematics for radiant heating of radiopaque solids is well-known and will not be discussed here. [1-4].

Semi-Transparent Radiation Concepts

For semi-transparent solids such as optically transparent plastics – PVC, PS, PMMA, PC, PET, and others –
transmissivity must be considered. For the first part of the discussion that follows, transmissivity is considered to be independent of wavelength, λ. There are two general methods for including transmissivity in radiant heating mathematics.

The ray-tracing method has been used extensively to describe the effect of transmission and reflection within a semi-transparent solid [5].

![Figure 1. Ray-Tracing Method in a Semi-Transparent Solid [5, Fig. 18-2, p. 780].](image)

Note that both inner and outer surfaces of the solid reflect radiant energy. The energy transmitted through point 1 is given as the inbound energy unit minus the reflectivity, or $\tau=1-\rho$. The amount of that energy that is absorbed by the solid is given as the one minus the transmitted energy. But the transmitted energy is given as $1-\rho r\tau$. That portion not absorbed, $\tau(1-\rho)r\tau$, reaches the rear surface of the solid where a portion of that is reflected, viz, $\rho(1-\rho)\tau$, and the rest, $(1-\rho)(1-\rho)\tau$, passes through the rear surface to the environment.

The fraction of the unit of unit inbound energy that is reflected is simply a progressive sum of the reflective energy from each bounce off the inner surfaces of the solid:

$$\rho_T = \rho[1+(1-\rho)^2(1+p^3e^2 + p^4e^4 + p^6e^6 + \ldots)]$$ \hspace{1cm} (3a)$$

$$\rho_T = \rho\left[1+\frac{(1-\rho)^2}{1-\rho^2}e^2\right]$$ \hspace{1cm} (3b)$$

The fraction of the energy transmitted is the progressive sum of all the energy rays that exited through the rear surface of the solid:

$$\tau_T = \frac{(1-\rho)^2}{1-\rho^2}$$ \hspace{1cm} (4)$$

And finally, the most important term in the heating of the semi-transparent solid, the fraction of the energy absorbed:

$$\alpha_T = 1 - \tau_T - \rho_T$$ \hspace{1cm} (5a)$$

$$\alpha_T = \frac{(1-\rho)(1-\tau)}{1-\rho^2\tau}$$ \hspace{1cm} (5b)$$

An alternate model, known as the net-radiation or heat flux model [5, pp. 780-781] yields the same results.

As an example of the relationship between these three elements, consider the air-water arithmetic given above. If $\rho = 0.04$, then

$$\alpha_T = \frac{1-\rho}{1-\rho r\tau} - \frac{1-\tau}{1-\rho r\tau} = 0.06, \frac{1-\tau}{1-\rho r\tau}$$ \hspace{1cm} (5c)$$

If the sheet is rather thick, the fraction of energy transmitted through the sheet will be small. As a result, the fraction of energy absorbed by the sheet will be:

$$\alpha_T = (1-\tau)$$ \hspace{1cm} (5d)$$

In other words, reflectivity for the air-water combination is essentially nil.

Radiation in Semi-Transparent Plastics

What about plastics? In Table 1 are tabulated the refractive indices of many plastics. The common semi-transparent ones are highlighted.

<table>
<thead>
<tr>
<th>Table 1. Refractive Indices of Plastics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastic</td>
</tr>
<tr>
<td>Fluorcarbon (FEP)</td>
</tr>
<tr>
<td>Polytetrafluoro-Ethylene (TFE)</td>
</tr>
<tr>
<td>Polypropylene (Unmodified)</td>
</tr>
<tr>
<td>Cellulose Propionate</td>
</tr>
<tr>
<td>Cellulose Acetate Butyrate</td>
</tr>
<tr>
<td>Cellulose Acetate</td>
</tr>
<tr>
<td>Epoxy Resin</td>
</tr>
<tr>
<td>Acrylic</td>
</tr>
<tr>
<td>Cellulose Nitrate</td>
</tr>
<tr>
<td>Polyethylene (Medium Density)</td>
</tr>
<tr>
<td>Polyethylene (Low Density)</td>
</tr>
<tr>
<td>Nylons (PA) Type II</td>
</tr>
<tr>
<td>Acrylic Multilayer</td>
</tr>
<tr>
<td>Polyethylene (High Density)</td>
</tr>
<tr>
<td>Styrene Butadiene Thermoplastic</td>
</tr>
<tr>
<td>Polyethylene Terephthalate (PET)</td>
</tr>
<tr>
<td>PVC (Rigid)</td>
</tr>
<tr>
<td>Nylons (Polyamide) Type 6/6</td>
</tr>
<tr>
<td>Urea Formaldehyde</td>
</tr>
<tr>
<td>Polystyrene (High Density)</td>
</tr>
<tr>
<td>Polystyrene (General Purpose)</td>
</tr>
<tr>
<td>Polystyrene (Heat & Chemical)</td>
</tr>
<tr>
<td>Polycarbonate (Unfilled)</td>
</tr>
<tr>
<td>Polystyrene</td>
</tr>
</tbody>
</table>

(continued on next page)
For the polymers listed in Table 1, the reflectivity range is 0.021 to 0.057. Although reflectivity is very small for plastics, it is considered in the analysis that follows.

Consider now transmissivity of semi-transparent plastics. It is generally accepted that the Beer-Lambert law holds for semi-transparent solids:

\[\tau(\lambda) = e^{-\alpha(\lambda)y} \]

(6)

Where \(\lambda \) is the wavelength, \(\tau \) is the wavelength-dependent transmissivity, \(\alpha \) is the wavelength-dependent absorption coefficient of the solid, and \(l \) is the thickness of the solid.

Radiant heating of most semi-transparent plastic solids occurs in the far infrared wavelength range of 2.5 \(\mu \)m to perhaps 10 \(\mu \)m. The primary range for thermoforming is about 2.5 \(\mu \)m to about 7 \(\mu \)m. This range corresponds to a temperature range of 350°F to about 1600°F. The Fourier Transform Infrar or FTIR device is ideal for determining the wavelength-dependant transmissivity of semi-transparent plastic solids. Several FTIR plots are shown in Figures 2-4. Note that the wavelength-dependent transmissivity is shown for two film thicknesses.

As is apparent from these plots, energy transmission, and therefore energy uptake, is highly wavelength-dependent. As an example, the plastics shown absorb 100% of inbound radiant energy in the 3.2 \(\mu \)m to 3.7 \(\mu \)m wavelength range. This is the fingerprint for all plastics having carbon-hydrogen bonds [C-H]. Certain plastics such as PVC absorb 100% of the inbound radiant energy around a wavelength of about 8 \(\mu \)m, as well. This is not the case for others such as PE.

As noted earlier, the arithmetic was proposed for radiant properties that are independent of wavelength. As an example, average transmissivity values are shown in Table 2 for the two thicknesses of the three plastics shown in Figures 2-4. Keep in mind that the transmissivity values represent \(\tau \).

Table 2

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Transmissivity for thin film</th>
<th>Transmissivity for thicker film</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>-0.88 @ 0.001 in</td>
<td>-0.56 @ 0.010 in</td>
</tr>
<tr>
<td>PS</td>
<td>-0.76 @ 0.001 in</td>
<td>-0.35 @ 0.010 in</td>
</tr>
<tr>
<td>PVC</td>
<td>-0.62 @ 0.003 in</td>
<td>-0.44 @ 0.012 in</td>
</tr>
</tbody>
</table>

Average and Mean Transmissivities

Because \(\tau \) and \(l \) are known, local absorption coefficient values can be calculated from equation (6). And because these values are known for the three thicknesses of these plastics, the average absorption coefficient values, (thin + thick)/2, can be considered:

Table 3

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Absorption Coefficient, in(^1) for thin film</th>
<th>Absorption Coefficient, in(^1) for thicker film</th>
<th>Mean Absorption Coefficient</th>
<th>Average Absorption Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>128</td>
<td>58</td>
<td>86</td>
<td>93</td>
</tr>
<tr>
<td>PS</td>
<td>274</td>
<td>105</td>
<td>203</td>
<td>190</td>
</tr>
<tr>
<td>PVC</td>
<td>159</td>
<td>68</td>
<td>104</td>
<td>114</td>
</tr>
</tbody>
</table>

The mean absorption coefficient values can also be determined, from \((\text{thin} \times \text{thick})^{1/2}\). Table 4 (shown on next page) compares the average transmissivity values of Table 2 with those calculated using the mean and average absorption coefficient values of Table 3.

As is apparent in Figure 5 (shown on next page), the absorption coefficient values calculated using the Beer-Lambert law, decrease with increasing sheet thickness for these three plastics. Although this effect has been observed

3 Although this theory was discovered by Pierre Boughuer, it is often attributed to Johann Lambert who rediscovered it, and August Beer, who extended it to other materials, including atmospheric gases.
for essentially all plastics for which there are infrared scans, there is no apparent reason for this anomaly.4

Transmissivity Values for Thin-Gauge Plastic Sheet

Thermoformers rarely radiantly heat plastic films of thicknesses less than 0.010 inches or 250 μm. Therefore, the transmissivity values for the thicker films of Table 3 are considered valid in further calculations. In addition, the Beer-Lambert law is assumed to be valid for all calculations for films thicker than 0.010 inches or 25 μm.

Table 5 (shown on page 26) presents calculated values for absorptivity and reflectivity for the three plastics in Table 2 for original thick films and for sheets of 0.020 inches or 0.5 mm, 0.030 inches or 0.75 mm, and 0.040 inches or 1.00 mm in thickness.

Note that even at 0.030 inch or 0.75 mm, PE and PVC still absorb only about 80% of the incident radiant energy. Figures 6 (show on page 28) and Figure 7 (shown on page 29) illustrate the effect of sheet thickness on transmissivity and absorptivity values for these three semi-transparent plastics. 1

Table 4. Comparison of Table 2 Average Transmissivity Values with Mean and Average Calculated Values

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Table 2 Value</th>
<th>Mean Calc’d Value</th>
<th>Mean Pct Error</th>
<th>Avg Calc’d Value</th>
<th>Avg Pct Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0.88</td>
<td>0.93</td>
<td>+ 5.7</td>
<td>0.91</td>
<td>+ 3.5</td>
</tr>
<tr>
<td>PS</td>
<td>0.76</td>
<td>0.82</td>
<td>+ 7.9</td>
<td>0.83</td>
<td>+ 8.8</td>
</tr>
<tr>
<td>PVC</td>
<td>0.62</td>
<td>0.73</td>
<td>+17.7</td>
<td>0.71</td>
<td>+14.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Table 2 Value</th>
<th>Mean Calc’d Value</th>
<th>Mean Pct Error</th>
<th>Avg Calc’d Value</th>
<th>Avg Pct Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0.56</td>
<td>0.42</td>
<td>-25.0</td>
<td>0.40</td>
<td>-28.6</td>
</tr>
<tr>
<td>PS</td>
<td>0.35</td>
<td>0.13</td>
<td>-63.0</td>
<td>0.15</td>
<td>-57.3</td>
</tr>
<tr>
<td>PVC</td>
<td>0.44</td>
<td>0.29</td>
<td>-34.1</td>
<td>0.26</td>
<td>-40.9</td>
</tr>
</tbody>
</table>

Figure 5. Calculated average absorption coefficient values for three semi-transparent plastics, noting the disparity between very thin films of 0.001 in and very thin thermoformable sheet.

4 According to the literature on spectroscopy, for liquids, solutions that are not homogeneous can show deviations from the Beer-Lambert law because of the phenomenon of absorption flattening. The deviations will be most noticeable under conditions of low concentration and high absorbance. The deviations so noted tend to be minor, to a few percent, and not on the order of magnitude seen here. There seems to be no equivalent concept for plastic solids. There is also a strong indication that inclusions of different indices of refraction may act to alter the transmission of radiation through the solid (6).
Table 5.
Calculated Absorptive and Reflectivity Values

Thick Films of Table 2

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Absorption Coefficient, in(^{-1})</th>
<th>τ(_T)</th>
<th>Avg Trans.</th>
<th>Calc’d Trans., τ</th>
<th>Calc’d Reflect., ρ(_T)</th>
<th>Calc’d Absorb., α(_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>58</td>
<td>0.56 @ 0.010 in</td>
<td>0.61</td>
<td>0.045</td>
<td>0.062</td>
<td>0.395</td>
</tr>
<tr>
<td>PS</td>
<td>105</td>
<td>0.34 @ 0.010 in</td>
<td>0.38</td>
<td>0.052</td>
<td>0.059</td>
<td>0.608</td>
</tr>
<tr>
<td>PVC</td>
<td>68</td>
<td>0.44 @ 0.012 in</td>
<td>0.48</td>
<td>0.047</td>
<td>0.057</td>
<td>0.513</td>
</tr>
</tbody>
</table>

0.020 inch (0.5 mm) thick sheet

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Avg Trans., τ(_T)</th>
<th>Calc’d Trans., τ</th>
<th>Calc’d Reflect., ρ(_T)</th>
<th>Calc’d Absorb., α(_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0.31</td>
<td>0.34</td>
<td>0.045</td>
<td>0.050</td>
</tr>
<tr>
<td>PS</td>
<td>0.12</td>
<td>0.136</td>
<td>0.052</td>
<td>0.053</td>
</tr>
<tr>
<td>PVC</td>
<td>0.26</td>
<td>0.283</td>
<td>0.047</td>
<td>0.050</td>
</tr>
</tbody>
</table>

0.030 inch (0.75 mm) thick sheet

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Avg Trans., τ(_T)</th>
<th>Calc’d Trans., τ</th>
<th>Calc’d Reflect., ρ(_T)</th>
<th>Calc’d Absorb., α(_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0.176</td>
<td>0.193</td>
<td>0.045</td>
<td>0.047</td>
</tr>
<tr>
<td>PS</td>
<td>0.043</td>
<td>0.048</td>
<td>0.052</td>
<td>0.052</td>
</tr>
<tr>
<td>PVC</td>
<td>0.130</td>
<td>0.143</td>
<td>0.047</td>
<td>0.048</td>
</tr>
</tbody>
</table>

0.040 inch (1.00 mm) thick sheet

<table>
<thead>
<tr>
<th>Plastic</th>
<th>Avg Trans., τ(_T)</th>
<th>Calc’d Trans., τ</th>
<th>Calc’d Reflect., ρ(_T)</th>
<th>Calc’d Absorb., α(_T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>0.106</td>
<td>0.115</td>
<td>0.045</td>
<td>0.046</td>
</tr>
<tr>
<td>PS</td>
<td>0.015</td>
<td>0.017</td>
<td>0.052</td>
<td>0.052</td>
</tr>
<tr>
<td>PVC</td>
<td>0.066</td>
<td>0.073</td>
<td>0.047</td>
<td>0.047</td>
</tr>
</tbody>
</table>

Figure 6. Thickness-dependent transmissivity values for three semi-transparent plastics (assuming Beer-Lambert values for thicker FTIR films).
Absorptivity of three semi-transparent plastics

![Graph showing absorptivity values for three semi-transparent plastics.](image)

Figure 7. Thickness-dependent absorptivity values for three semi-transparent plastics (assuming Beer-Lambert values for thicker FTIR films).

References

Our mission is to facilitate the advancement of thermoforming technologies through education, application, promotion and research.

Visit Our Website at: www.thermoformingdivision.com
2011 Thermoforming Scholarship Recipients

Brian L. Rupnow
The Segen Griep Memorial Scholarship - $5,000
University of Wisconsin-Stout

Brian is a senior at the University of Wisconsin - Stout where he is pursuing a double major in Plastics Engineering and Mechanical Engineering. He is a member of the Stout Academic Honor Society and serves as Vice President of the SPE Student Chapter at Stout.

Brian has held two internships at Scientific Molding Corporation where he was involved in many aspects of manufacturing, including the design of inspection gages, cost reduction projects, research and secondary process development. As a UW-Stout Plastics Lab Assistant, he wrote lab manuals and process sheets for newly acquired lab equipment. Brian hopes to work in the polymer medical device industry after graduation.

Martha M. Brundage
The Thermoforming Division Memorial Scholarship - $2,500
University of Akron

Martha is a sophomore at the University of Akron, where she is pursuing a degree in Mechanical Polymer Engineering. She received Associate degrees in Plastics Processing and Coloring of Plastics from Terra Community College, where she served as President of the SPE Student Chapter. She was also featured in television promotions for Terra and visited area high schools on recruiting trips.

After gaining three years of experience as a color development engineer, mechanical lab tester and quality assurance technician at Washington Penn Plastics Co., she chose to continue her education at the University of Akron. A motivated, dedicated student, she hopes to one day make an impact on the plastic industry.

Kevin W. Rudy
Mathelin Bay Scholarship of Excellence - $1,000
Ferris State University

Kevin is a senior at Ferris State University pursuing a double major in Plastic Engineering Technology and Rubber Engineering Technology. He served as President of the SPE Student Chapter at Ferris and Vice President of the Ferris State Rubber Group.

Kevin has held internships at Advanced Molding Solution and Trelleborg Automotive, furthering his knowledge of molding both plastics and rubber. He most recently served as a tutor for the freshman class at Ferris, assisting them on thermoforming, extrusion, blow molding and injection molding. Sharing his insights on his educational experiences at Ferris and as an intern in industry has been very rewarding to Kevin.
VENICE (MESTRE) 26–27 APRIL 2012

8th EUROPEAN THERMOFORMING CONFERENCE 2012

Back on Track!

European Thermoforming Division · Eric Sasselaan 51, B-2020 Antwerp, Belgium
Tel. +32 3 541 77 55, Fax +32 3 541 84 25 · spe.etd@skynet.be · www.e-t-d.org
2011 EDITORIAL CALENDAR

Quarterly Deadlines for Copy and Sponsorships

ALL FINAL COPY FOR EDITORIAL APPROVAL

15-FEB Spring 30-APR Summer
31-JUL Fall 15-NOV Winter
Conference Edition Post-Conference Edition

All artwork to be sent in .eps or .jpg format with minimum 300dpi resolution.

Become a Thermoforming Quarterly Sponsor in 2012!

Additional sponsorship opportunities will include 4-color, full page, and 1/2 page.

RESERVE YOUR PRIME SPONSORSHIP SPACE TODAY.

Questions? Call or email
Laura Pichon
Ex-Tech Plastics
847-829-8124
Lpichon@extechplastics.com

BOOK SPACE IN 2012!

SAVE THE DATE!
October 17 thru October 19, 2011
Westin Peachtree Plaza Hotel
Atlanta, Georgia

Fast Flexible Reliable

• Over 50% of the top 25 North American heavy gage thermoformers use KMT Robotic Solutions trimming systems
• Up to 50% higher throughput and more flexibility than a 5 axis CNC
• Automatic fixture locating and spindle alignment
• Improved personnel safety and product quality
• High flexibility allows a variety of part sizes

1.248.829.2800
solutions.na@kmtrobotic.com
www.kmtrobotic.com
Creating value through automation.

Leader in Twin-Sheet Pressure Forming Technology!

NOW OFFERING:
• 5-Axis CNC Routers
• Thermoforming Molds
• Part Prototyping
• Machine Replacement & Trade-in Programs

590 Tower Blvd, Carol Stream, IL 60188, Tel: (630) 665-1700
www.maacmachinery.com
Sustainability and Recycling on My Mind

October 17-19, 2011
Westin Peachtree Plaza Hotel - Atlanta, Georgia USA
Reservations: +1-800-937-8461
Request SPE GPEC Rate of $155.00

Final Papers Due: August 1, 2011
Presentations Due: September 1, 2011

Technical Information Contact:
Adrian Merrington
merrington@mni.org

2011 Gold Sponsors

2011 Silver Sponsors

Join us for the GPEC Environmental Awards on Tuesday, October 18, 2011

Clean Technology Competition sponsored by:

Plant Tours - Full Conference Attendees can select one:

Visit our website for current up-to-date GPEC information.
www.sperecycling.org

Exhibitor and sponsorship opportunities are still available.
Gwen Mathis, Conference Coordinator
PH: +1 706-238-9101

Society of Plastics Engineers
MACHINERY COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Alongi</td>
<td>MAAC Machinery 590 Tower Blvd.</td>
<td>630.665.1700</td>
<td>630.665.7799</td>
<td>jalongi@maacmachinery.com</td>
</tr>
<tr>
<td>Roger Fox</td>
<td>The Foxmor Group 373 S. Country Farm Road Suite 202 Wheaton, IL 60187</td>
<td>630.653.2200</td>
<td>630.653.1474</td>
<td>rfox@foxmor.com</td>
</tr>
<tr>
<td>Hal Gilham</td>
<td>Productive Plastics, Inc. 103 West Park Drive Mt. Laurel, NJ 08045</td>
<td>856.234.3310</td>
<td></td>
<td>hgilham@productiveplastics.com</td>
</tr>
<tr>
<td>Don Kruschke</td>
<td>(Chair) TME 31875 Solon Road Solon, OH 44139</td>
<td>440.498.4000</td>
<td>440.498.4001</td>
<td>donk@allthingsthermoforming.com</td>
</tr>
<tr>
<td>Mike Sirotnak</td>
<td>Solar Products 228 Wanaque Avenue Pompton Lakes, NJ 07442</td>
<td>973.248.9370</td>
<td>973.835.7856</td>
<td>msirotnak@solarproducts.com</td>
</tr>
<tr>
<td>Brian Ray</td>
<td>Ray Products 1700 Chablis Drive Toronto, CA 91761</td>
<td>909.390.9906</td>
<td>909.390.9984</td>
<td>brianr@rayplastics.com</td>
</tr>
<tr>
<td>Brian Winton</td>
<td>Lyle Industries, Inc. 4144 W. Lyle Road Beaverton, MI 48612</td>
<td>989.435-7714 x 32</td>
<td>989.435-7250</td>
<td>bwinton@lyleindustries.com</td>
</tr>
</tbody>
</table>

MATERIALS COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jim Armor</td>
<td>Armor & Associates 16181 Santa Barbara Lane Huntington Beach, CA 92649</td>
<td>714.846.7000</td>
<td>714.846.7001</td>
<td>jimarmor@aol.com</td>
</tr>
<tr>
<td>Phil Barhouse</td>
<td>Spartech Packaging Technologies 100 Creative Way PO Box 128 Ripon, WI 54971</td>
<td>920.748.1119</td>
<td>920.748.9466</td>
<td>phil.barhouse@spartech.com</td>
</tr>
<tr>
<td>Lola Carere</td>
<td>Premier Material Concepts 100 N. Park Road, Apt. 1432 Wyomissing, PA 19610</td>
<td>567.245.5253</td>
<td></td>
<td>lcarere@rowmark.com</td>
</tr>
<tr>
<td>Juliet Goff</td>
<td>Kal Plastics, Inc. 2050 East 48th Street Vernon, CA 90058-2022</td>
<td>323.581.6194</td>
<td></td>
<td>juliet@kal-plastics.com</td>
</tr>
<tr>
<td>Donald Hytton</td>
<td>McConnell Company 646 Holyfield Highway Fairburn, GA 30213</td>
<td>678.772.5008</td>
<td></td>
<td>don@thermoformingmc.com</td>
</tr>
<tr>
<td>Roger P. Jean</td>
<td>(Chair) Rowmark/PMC PO Box 1605 2040 Industrial Drive Findlay, OH 45840</td>
<td>567.208.9758</td>
<td></td>
<td>rjean@rowmark.com</td>
</tr>
<tr>
<td>Laura Pichon</td>
<td>Ex-Tech Plastics PO Box 576 11413 Burlington Road Richmond, IL 60071</td>
<td>847.829.8124</td>
<td>815.678.4248</td>
<td>lpicohon@extechplastics.com</td>
</tr>
<tr>
<td>Robert G. Porsche</td>
<td>General Plastics 2609 West Mill Road Milwaukee, WI 53209</td>
<td>414-351-1000</td>
<td>414-351-1284</td>
<td>bob@genplas.com</td>
</tr>
</tbody>
</table>

PROCESSING COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haydn Forward</td>
<td>Specialty Manufacturing Co. 6790 Nancy Ridge Road San Diego, CA 92121</td>
<td>858.450.1591</td>
<td>858.450.0400</td>
<td>hforward@smi-mfg.com</td>
</tr>
<tr>
<td>Ken Griep</td>
<td>Portage Casting & Mold 2901 Portage Road Portage, WI 53901</td>
<td>608.742.2199</td>
<td></td>
<td>ken@pcmw.com</td>
</tr>
<tr>
<td>Steve Hasselbach</td>
<td>CMI Plastics 222 Pepsi Way Ayden, NC 28416</td>
<td>752.246.2171</td>
<td>752.246.2172</td>
<td>steve@cmiplastics.com</td>
</tr>
<tr>
<td>Roger Kipp</td>
<td>McClarin Plastics 15 Industrial Drive PO Box 486 Hanover, PA 17331</td>
<td>717.637.2241</td>
<td></td>
<td>rkipp@mcclarinplastics.com</td>
</tr>
<tr>
<td>Jay Waddell</td>
<td>Plastics Concepts & Innovations 1127 Queensborough Road Suite 102 Mt. Pleasant, SC 29464</td>
<td>843.971.7833</td>
<td>843.216.6151</td>
<td>jwaddell@plasticconcepts.com</td>
</tr>
</tbody>
</table>

Board of Directors

MACHINERY COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>James Alongi</td>
<td>MAAC Machinery 590 Tower Blvd.</td>
<td>630.665.1700</td>
<td>630.665.7799</td>
<td>jalongi@maacmachinery.com</td>
</tr>
<tr>
<td>Roger Fox</td>
<td>The Foxmor Group 373 S. Country Farm Road Suite 202 Wheaton, IL 60187</td>
<td>630.653.2200</td>
<td>630.653.1474</td>
<td>rfox@foxmor.com</td>
</tr>
<tr>
<td>Hal Gilham</td>
<td>Productive Plastics, Inc. 103 West Park Drive Mt. Laurel, NJ 08045</td>
<td>856.234.3310</td>
<td></td>
<td>hgilham@productiveplastics.com</td>
</tr>
<tr>
<td>Don Kruschke</td>
<td>(Chair) TME 31875 Solon Road Solon, OH 44139</td>
<td>440.498.4000</td>
<td>440.498.4001</td>
<td>donk@allthingsthermoforming.com</td>
</tr>
<tr>
<td>Mike Sirotnak</td>
<td>Solar Products 228 Wanaque Avenue Pompton Lakes, NJ 07442</td>
<td>973.248.9370</td>
<td>973.835.7856</td>
<td>msirotnak@solarproducts.com</td>
</tr>
<tr>
<td>Brian Ray</td>
<td>Ray Products 1700 Chablis Drive Toronto, CA 91761</td>
<td>909.390.9906</td>
<td>909.390.9984</td>
<td>brianr@rayplastics.com</td>
</tr>
<tr>
<td>Brian Winton</td>
<td>Lyle Industries, Inc. 4144 W. Lyle Road Beaverton, MI 48612</td>
<td>989.435-7714 x 32</td>
<td>989.435-7250</td>
<td>bwinton@lyleindustries.com</td>
</tr>
</tbody>
</table>

MATERIALS COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarissa Schroeder</td>
<td>Auriga Polymers 1551 Dewberry Road Spartanburg, SC 29307</td>
<td>864.579.5047</td>
<td>864.579.5288</td>
<td>clarissa.schroeder@us.indorama.net</td>
</tr>
<tr>
<td>Eric Short</td>
<td>Premier Material Concepts 11165 Horton Road Holly, Michigan 48442</td>
<td>248.705.2830</td>
<td></td>
<td>eshort@rowmark.com</td>
</tr>
</tbody>
</table>

PROCESSING COMMITTEE

<table>
<thead>
<tr>
<th>Name</th>
<th>Company/Address</th>
<th>Phone</th>
<th>Fax</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haydn Forward</td>
<td>Specialty Manufacturing Co. 6790 Nancy Ridge Road San Diego, CA 92121</td>
<td>858.450.1591</td>
<td>858.450.0400</td>
<td>hforward@smi-mfg.com</td>
</tr>
<tr>
<td>Ken Griep</td>
<td>Portage Casting & Mold 2901 Portage Road Portage, WI 53901</td>
<td>608.742.2199</td>
<td></td>
<td>ken@pcmw.com</td>
</tr>
</tbody>
</table>

Director Emeritus

Art Buckel
McConnell Company 3452 Bayonne Drive San Diego, CA 92109 | 858.273.9620 | artbuckel@thermoformingmc.com
Thermoforming Quarterly
THIRD QUARTER 2011
VOLUME 30 ■ NUMBER 3

Sponsor Index

- Allen ... 23
- Brown Machine 15
- CMT Materials 10
- CMG .. 23
- European Conference 2011 31
- GN Plastics 6
- GPEC 2011 32-33
- Kiefel ... 23
- KMT ... 32
- MAAC Machinery 32
- McClarin Plastics 6
- Nova Chemicals Inside Back Cover
- PCI ... 34
- PMC ... Inside Front Cover
- Portage Casting & Mold 6
- Primex Plastics 10
- Productive Plastics 23
- Profile Plastics Corp. 23
- PTI ... Back Cover
- Ray Products 23
- Solar Products 6
- Spartech 11
- Tempco 36
- Thermoforming Machinery & Equipment Inc. 34
- TPS ... 11
- TSL ... 18
- Weco Int’l. Inc. 10
- Zed Industries 23

Thermoforming Division Membership Benefits

- Access to industry knowledge from one central location: www.thermoformingdivision.com.
- Subscription to Thermoforming Quarterly, voted “Publication of the Year” by SPE National.
- Exposure to new ideas and trends from across the globe.
- New and innovative part design at the Parts Competition.
- Open dialogue with the entire industry at the annual conference.
- Discounts, discounts, discounts on books, seminars and conferences.
- For managers: workshops and presentations tailored specifically to the needs of your operators.
- For operators: workshops and presentations that will send you home with new tools to improve your performance, make your job easier and help the company’s bottom line.

JOIN D25 TODAY!
It's coming...

THE BEAST

PMC is thrilled to announce a new 20,000 square foot facility expansion to house one of the largest sheet extruders of its kind... "The Beast!"

"The Beast" will increase PMC's operational capacity and help us to better serve our valued customers... current and new. This monster extrusion line will have the capability to produce one, two and three-ply sheet materials up to 120' wide and gauges up to .375".

Contact PMC today to place your custom plastic sheet order and reserve production time early for "The Beast's" launch in April 2011.

Contact PMC with your custom plastic extrusion needs today!

1-877.BUYPMC6 (289.7626) | www.buyPMC.com | sales@buyPMC.com
Create better performing, cost-effective, sustainable packaging solutions with UPES® resin

VISIT US AT BOOTH 615
The 20th Annual Thermoforming Conference
September 17-20, 2011 • Schaumburg, IL

Learn more about how UPES resin helps thermoformers maintain a cost-competitive advantage while delivering material source reduction and improved performance at www.upesresin.com

upesresin
DELIVERING A UNIQUE BALANCE OF PERFORMANCE, COST AND SUSTAINABILITY
A product of NOVA Chemicals®
World Class Sheet Extrusion Systems

Complex Co-Extrusion
J-Stack Roll Stands
High Output Co-Extrusion
2-Up Winding Systems
Heavy Gauge Systems
Cut Sheet Solutions
Horizontal Roll Stands
Thin Gauge Co-Extrusion

Inline | Roll Stock | Cut Sheet Solutions

2655 White Oak Circle, Aurora, Illinois 60502 | T: 630.585.5800 | F: 630.585.5855

www.ptiextruders.com